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1. Introduction 

The CLIMSAVE Integrated Assessment Platform (IAP) is a web-based exploratory tool that stakeholders 

can use to interactively investigate climate change impacts and adaptive responses of relevance to 

themselves.  In order to deliver the fast web-based response time demanded by this participatory 

application, a process of meta-modelling has been carried out on a set of tried and tested desktop 

models to abstract the leanest representation for inclusion within the IAP that is consistent with 

delivering both functionality and speed.   

The spatial scale of the IAP represents a compromise between the scale of available harmonised 

datasets, model runtime and spatial detail of the outputs.  The higher the resolution at which the IAP 

operates, the greater is the number of times that the meta-models have to run and hence the greater 

the overall runtime of the IAP.  The European and Scottish CLIMSAVE IAPs therefore operate at 

resolutions of 10’ x 10’ (10 minute by 10 minute) and 5km x 5km, respectively, consistent with the 

available baseline climatologies. 

The CLIMSAVE IAP contains a suite of meta-models describing key European sectors (agriculture, forests, 

water, coasts, biodiversity and urban) which each simulate a range of stakeholder-relevant impact and 

ecosystem service indicators.  Once the User has selected the model inputs (scenario selection and 

slider/button settings), the IAP runs the series of linked meta-models (Figure 1) which are described in 

the following sections. 

 

Figure 1: Overview of the meta-model linkages within the CLIMSAVE IAP [Names of the models used to 

generate the meta-models are given in parentheses].  
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2. Overview of the snow cover meta-model 

The snow cover meta-model is based on the detailed SnowMAUS snow cover simulator (Trnka et al., 

2010), whose core algorithms were proposed by Running and Coughlan (1988) and modified by Trnka et 

al. (2010).  The snowMAUS model operates on a daily time step, with seven key parameters that govern 

snow accumulation and melting.  Two datasets were used for calibration and validation of SnowMAUS; 

65 sites across Austria with data from 1948-2002, and 83 sites across Europe with 1971-2000 data from 

the COST734 database (Trnka et al., 2011).  The snowMAUS model effectively captured daily values of 

snow cover in terms of snow water equivalent and snow duration across a large altitudinal gradient.  The 

model was able to explain an average of 73% of the variability in the number of days with snow during 

individual seasons and, an average of 81% of the variability in the seasonal volume of snow between 

1948 and 2002 (Figure 2.1). 

The SnowCover meta-model was based on an Artificial Neural Network that was calibrated and tested 

against outputs from SnowMAUS.  The meta-model was calibrated on a training set of data that was 

sampled to cover the range of predictors and the predicted variable, i.e. number of days with snow.  The 

meta-model was then independently tested on the complementary validation set.  The performance of 

the snow cover meta-model was statistically evaluated using the Pearson correlation coefficient (r), 

mean bias error (MBE) and root mean square error over the validation dataset.  The meta-model fit is 

good for both days with more than 1 cm of fresh snow (Figure 2.2; MBE of close to 0, RMSE of 2.1 days, 

and with more than 99% variability explained) and days with more than 10 cm of fresh snow (MBE = 0 

day; RMSE = 2.6 days and R2 = 0.99). 

  

Figure 2.1: Validation of the SnowMAUS model at 
61 sites in terms of long-term climatology (1948-
2002) of snow cover. 

Figure 2.2: Comparison of the validation runs of 
the snow meta-model against SnowMAUS for 
snow days with more than 1 cm of fresh snow. 
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3. Overview of the RUG Urban meta-model 

The RUG urban meta-model is based on the Regional Urban Growth (RUG; Rickebusch et al. in prep.) 

model, which simulates urban growth as a function of changes in socio-economic variables and societal 

values.  The full model also takes into account the local geography, travel times with the existing 

infrastructure and city typology (e.g. mono- versus polycentric).  It first calculates the expected quantity 

of artificial surfaces for each NUTS2 region, based on the linear regression model developed by Reginster 

and Rounsevell (2006), which links the proportion of artificial surfaces to the population and gross 

domestic product per capita. RUG uses two additional factors, urban type (large city versus smaller 

city/rural region) and country, in this regression model.  RUG then evaluates the potential for settlement 

in each 1km x 1km grid cell within the region, based on the cell’s characteristics (e.g. existing artificial 

surfaces, distance to the coast) and parameters reflecting planning and household preferences (e.g. 

strictness of planning constraints, attractiveness of the coast). 

The RUG meta-model in the IA platform consists of a look-up table of maps of the proportion of artificial 

surfaces per 10’ x 10’ grid cell, based upon aggregated outputs of runs of the full RUG model on the 1 x 1 

km grid with all possible combinations of input values. 

 

Figure 3.1: Artificial surfaces derived from the CORINE land-cover map (left) and produced by RUG 

with baseline parameters (right). 
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4. Overview of the metaGOTILWA+ forest meta-model 

The forest MetaGOTILWA+ meta-model is based on the GOTILWA+ (Growth Of Trees Is Limited by 

WAter, http://www.creaf.uab.cat/gotilwa+/) model, which simulates carbon and water uptake and 

fluxes through forests of different tree species and in changing environmental conditions, due to either 

climate or management regimes.  Processes are described in GOTILWA+ that integrate the results of 

simulated growth and evolution of the whole tree stand through time (hourly calculations integrated at a 

daily time step).  The GOTILWA+ model has been extensively applied in different European projects such 

as LTEEF-II, ATEAM, SILVISTRAT and ALARM, compared with other process-based models (see Morales et 

al., 2005) and been applied European-wide (see Schröter et al., 2005). 

The forest MetaGOTILWA+ meta-model is based on artificial neural networks which have been 

developed to reproduce GOTILWA+ outputs as a function of GOTILWA+ inputs for around 1000 cells, 

selected across Europe to explore the response of GOTILWA+ across all ranges of environmental and 

climate conditions.  The predictions of the neural network were tested against data from cells which 

have not been used for training (Figure 4.1).  Although there is inevitable scatter in the example results 

for Pinus sylvestris (Figure 4.1), there is a strong 1:1 relationship between the outputs of metaGOTILWA+ 

and GOTILWA+.  Figure 4.2 shows example spatial results across those climate zones in Europe in which 

Pinus sylvestris grows for the baseline (1961-90) climate. 

 
 

Figure 4.1: Comparison of Gross Primary 
Production (GPP) outputs from GOTILWA+ and 
metaGOTILWA+ for Pinus sylvestris.  
 

Figure 4.2: Baseline GPP outputs from 
metaGOTILWA+ for Pinus sylvestris for the 
boreal, continental and alpine regions.  
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5. Overview of the fluvial and coastal flood zone meta-models 

The Coastal Fluvial Flood meta-model (CFFlood) provides estimates of the impacts of future flooding 

attributed to climate change and sea-level rise in Europe’s coastal and fluvial floodplains.  CFFlood 

contains three main sub-model components: (1) Coastal flood, (2) Fluvial flood and (3) Habitat 

change/loss components which are developed from Mokrech et al. (2008).   

The coastal flood component assumes that the Standard of Protection (SoP) of flood defences decreases 

and flood frequency increases with a rise in extreme sea levels (from astronomical tides, storm surges, 

and sea-level rise).  Food risk zones (based on topography and extreme sea levels) and estimated future 

SoP determine the extent of flooding, the number of people affected (based on population within the 

flooded areas) and the residential flood damages (based on damage curves by Linham et al. (2010)).  The 

results are also used as a constraint on agricultural land use – arable and pastoral farming are precluded 

from areas flooded more often than once every 10 and 1 years, respectively (Mokrech et al., 2008).  The 

fluvial flood component follows a similar approach, but uses flood maps for the rivers in Europe 

produced by the JRC Institute using LISFLOOD simulations (Feyen et al., 2011).  Changes in the area of 

flood plain habitats (saltmarsh, intertidal flats, coastal grazing marsh and fluvial grazing marsh) are also 

assessed (Richards et al., 2008). The direct impact of sea-level rise on coastal wetlands follows the broad 

scale model of McFadden et al. (2007).  Habitats can be either lost or can experience transition, 

considering the three influencing factors of accommodation space, sediment supply and rate of relative 

sea-level rise.  The outputs of the CFFlood meta-model are being validated using existing studies and 

results (Figure 5.1) – for example, by comparing against regional results from the RegIS2 model outputs 

for the East Anglia region in the UK (Richards et al., 2008; Mokrech et al., 2008).   

  

a) Coastal flood protection in the 
Netherlands. 

b) The 250 year flood map and the 200 year 
indicative flood map for an area in eastern England.  

Figure 5.1:  Calibrating/validating the input parameters into the CFFlood meta-model. 
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6. Overview of the WaterGAP water resources and water use meta-models 

The WaterGAP meta-model (WGMM) used in the IAP is designed to be a surrogate for the global 

hydrology and water use model WaterGAP (Water - Global Assessment and Prognosis; Alcamo et al., 

2003; Döll et al., 2003; Verzano, 2009) which consists of two main components: a global hydrology 

model and a global water use model.  

The WGMM hydrology meta-model makes use of a look-up table populated with the results of 273 pre-

run daily WaterGAP3 simulations for river flow parameters (Figure 8.1 and 8.2) and water availability 

assessments, aggregated for about 100 spatial units or river basins larger than 10,000 km2.  The WGMM 

output parameters related to river flow, i.e. Q95, Qavg, Q5 and Qmed, are downscaled to the 10’ x 10’ grid 

cells by multiplying the grid cell values for baseline conditions by the changes in the matching river basin 

relative to baseline conditions.   

The WGMM water use meta-model is based on the WaterGAP3 results for sectoral water withdrawals 

and consumption in the base year 2005 (EU FP6 project SCENES) for both countries and river basins.  For 

a given scenario, WGMM first computes the changes of sectoral water uses per country relative to the 

base year taking into account scenario input data on Gross Domestic Product, population, Gross Value 

Added, Thermal Energy Production and technological change.  In a second step, the country-level 

changes are applied to water uses at the river basin scale.  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.1: Simulated vs. observed high flow 
parameter Q5 for 25 gauging stations across 
Europe, dashed line = 1:1 line, red (solid) line = 
linear fit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.2: Simulated vs. observed low flow 
parameter Q95 for 25 gauging stations across 
Europe, dashed line = 1:1 line, red (solid) line = 
linear fit. 
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7. Overview of the crop yield meta-models 

The crop yield meta-models within the IAP are based on the results from the full agricultural model 

ROIMPEL (Rounsevell et al., 2003; Audsley et al., 2008), which simulates the daily dynamics of 

development stages, and water-, temperature-, and nitrogen stresses.  Biomass accumulation is based 

on radiation use efficiency (which is sensitive to CO2 concentration) and net photosynthetically active 

radiation.  Biomass increases and yields are corrected for temperature, water and nitrogen stresses. 

ROIMPEL results for actual, potential and irrigated crop yields and crop sowing and maturity dates are 

available for a wide range of crops (winter wheat and spring wheat, winter barley and spring barley, 

winter oil seed rape, potatoes, grain maize, sunflower, soybean, cotton, grass, olives) across Europe. 

The crop yield meta-models have been developed by training artificial neural networks (ANNs) to 

calibration datasets which adequately cover the whole range of both predictors (soil and climate 

parameters) and predicted variables e.g. sowing date or actual yield.  Each model was then 

independently tested on the complementary validation set in order to assess its performance accuracy 

(e.g. Figure 7.1).  The outputs from the 5 best ANNs models are combined together in order to generate 

a final composite projection.  The meta-models show excellent performance for sowing and harvest 

dates (with usually more than 90% of the variability explained), the RMSE for the yield estimates is in 

most cases below 0.5 t/ha and the MBE is close to 0 indicating that there is low/no systematic bias.  

 

Figure 7.1: Comparison of potential (water and nutrient unlimited) yield for winter wheat as predicted 

by (left) the mean of the meta-model ANN ensemble and (right) ROIMPEL. 

References 
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8. Overview of the SFARMOD rural land use allocation meta-model 

The SFARMOD meta-model is based on the Silsoe Whole Farm Model (SFARMOD) of whole farm 

planning.  SFARMOD (Holman et al., 2005; Annetts and Audsley, 2002; Audsley, 1981) is a mechanistic 

farm-based optimising linear programming model of long-term strategic agricultural land use allocation, 

based on profit maximisation subject to the constraints of soil, precipitation, and sound agronomic 

practice.  It has been extensively used in European and UK applications.  Within SFARMOD, the soils 

available for agriculture and forestry in each 10’ x 10’ grid cell are first constrained by urbanisation and 

protected areas of natural and semi-natural habitats.  The potential profit of the remaining soils for each 

potential land use is then estimated.  Each soil within each grid will be allocated to the most profitable 

option. 

Meta-models were developed to relate the input parameters to the SFARMOD outputs across the 

systematically modelled input parameter space of 20,000 SFARMOD simulations.  A neural network 

meta-model was derived for each modelled crop (winter wheat, spring wheat, winter barley, spring 

barley, winter oil seed rape, potatoes, grain maize, sunflower, soybean, cotton, grass, olives) to predict 

the proportion of the potential agricultural area allocated to the crop (Figure 8.1), based on inputs such 

as crop gross margin, soil type and effective precipitation.  Given these crop areas and using gross 

margins and workability, a further neural network meta-model calculates the farm profit (Figure 8.2).  It 

is assumed that each soil within each grid cell will be used for the most profitable option, with the land 

use based on lower thresholds of €350/ha for intensive agriculture and €150/ha for extensive 

agriculture.  If forestry is more profitable than agriculture, then forestry is allocated. 

  
Figure 8.1: Comparison of the performance of the 
SFARMOD meta-model with the results for the full 
SFARMOD for the percentage allocated to 
potatoes. 
 

Figure 8.2: Comparison of the performance of the 
SFARMOD meta-model with the results for the 
full SFARMOD for profit (1000€/100 ha). 
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9. Overview of the pest meta-models 

The pest meta-models were designed based on the outputs of the climate-matching software program 

CLIMEX (Sutherst et al., 2000) that estimates the geographical distribution of a species based on the 

climate conditions of a given location.  CLIMEX is based on the premise that it is possible to define 

climates which directly affect populations on a short time-scale.  CLIMEX outputs were produced for 7 

species - Codling moth (Cydia pomonela), European grapevine moth (Lobesia botrana), Cereal leaf beetle 

(Oulema melanopus), Colorado Potato Beetle (Leptinotarsa decemleniata), European corn borer (Ostrinia 

nubilalis, Bird cherry-oat aphid (Rhopalosiphum Padi) and the English grain aphid (Sitobion Avenae).  

Model outputs were compared with presence data in the CAB International database, Fauna Europea 

and published studies.  CLIMEX was also compared to the detailed model ECAMON (Trnka et al., 2007) 

using a database of European corn borer (ECB) occurrence spanning the Czech Republic.  Both models 

demonstrated very good agreement with the observed data, and both properly recorded the ECB 

expansion of the last decade of the 20th century.  Overall CLIMEX reproduces the regional and local 

presence/absence suitability for the above pest species.   

Meta-model ensembles of the best performing 5 artificial neural networks (ANNs) were developed for 

the Ecoclimatic Index (which describes the overall suitability of climate conditions for the establishment 

and long-term presence of a pest population) and the number of generations, with at least 91% of the 

variability explained. Figure 9.1 shows the excellent spatial comparison between CLIMEX and the ANN. 

   
Figure 9.1: Comparison of the Ecoclimatic Index for Cydia Pomonella, Oulema melanopus and 

Rophalosiphum padi according to (a) CLIMEX and (b) the mean of the 5 ANN meta-models. 
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10. Overview of the LPJ-GUESS biodiversity meta-model 

The LPJ-GUESS meta-model is based on outputs from LPJ-GUESS, a complex dynamic global vegetation 

model. It simulates successional vegetation dynamics on different scales while modelling the 

atmosphere-vegetation carbon and water fluxes, plant physiology, establishment, mortality, and 

disturbance due to land use and fire (Sitch et al., 2003).   

As it is impracticable to run LPJ-GUESS on a reduced functionality, it was decided to construct the meta-

model using look-up tables of LPJ-GUESS model outputs for each time slice and scenario.  Given the 

extensive previous validation of LPJ-GUESS (e.g. Gritti et al., 2006; Morales et al., 2007), the LPJ-GUESS 

meta-model was not further calibrated or validated during CLIMSAVE.  Within the baseline setting in the 

IAP, the number of combinations of slider positions (for annual temperature change, summer and winter 

precipitation change and CO2 concentration) is too great to create look-up tables for every combination.  

Hence, a sensitivity analysis of LPJ-GUESS has been undertaken to define relationships between the 

climate variables and the outputs of LPJ-GUESS (Figure 10.1). 

For each combination of user choice (emissions scenario, GCM, climate sensitivity and timeslice), the 

matrix of the look-up tables has the dimensions of number of species (22) times number of land use 

types (4) times number of grid cells (23781) times number of output variables (Net Primary Production- 

NPP, biomass, Leaf Area Index, timber). 

 

Figure 10.1: Three dimensional scatter plot of NPP as a function of temperature and precipitation. 
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11. Overview of the SPECIES biodiversity meta-model 

The SPECIES model (Spatial Estimator of the Climate Impacts on the Envelope of Species; Pearson et al., 

2002) is used in the IAP to simulate the impacts of climate change on the suitable climate space of 116 

species.  The species were selected to interact with the agricultural, forest, coastal and water sectors and 

to indicate a range of ecosystem services (pollination, berries for food from wild plants, charismatic or 

iconic wildlife for aesthetic enjoyment, and species for hunting).  SPECIES is based on ensembles of 

artificial neural networks (ANN), which integrate bioclimatic variables of relevance to birds and other 

taxa for projecting the distribution of species through the characterisation of bioclimatic envelopes. 

The model is trained using existing empirical data on the European and North African (north of 15oN) 

distributions of species to enable the full climate space of a species to be characterised and to ensure 

that the model does not extrapolate outside its training dataset when used to project the distribution of 

species under potential future climates in Europe.  The SPECIES model ANNs are calibrated and tested 

using an ensemble forecasting approach whereby projections are derived by constructing and training 

multiple ANNs for a single species (O’Hanley, 2009).  The outputs from each of these models are then 

combined together in order to generate a final composite projection.   

Validation of the models showed that all species had ‘Area Under the Receiver Operating Characteristic 

Curve’ (AUC) statistics greater than 0.89, indicating good discrimination ability and 84% has AUC 

statistics greater than 0.95, indicating excellent model performance.  Kappa values are slightly lower, but 

this is to be expected as the index ranges from 0 to 1.  Values were greater than 0.7 for 66% of species 

indicating very good agreement between observed and simulated distributions, and between 0.4 and 0.7 

for 30% of species indicating reasonable agreement.   

  
Figure 11.1: Illustrative results for Silene gallica (small-flowered catchfly) for Europe: (left) simulated 

climate suitability surface; (right) observed presence/absence distribution. 

References 

O’Hanley JR (2009).  NeuralEnsembles: a neural network based ensemble forecasting program for habitat and 

bioclimatic suitability analysis. Ecography, 32: 89-93. 

Pearson RG, Dawson TP, Berry PM and Harrison PA (2002). SPECIES: a spatial evaluation of climate impact on the 

envelope of species. Ecological Modelling, 154: 289-300. 


