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1. Introduction

lan Holman
Environmental Science and Technology Department, Cranfield University, UK

1.1 Background to Deliverable 2.2

Deliverable 2.2 reports on one of the Tasks associated with the development of the
CLIMSAVE Integrated Assessment Platform (IAP):

e Task 2.4 - Development and validation of the meta-models within the 1A platform.

However, because the development of the meta-models is so intrinsically linked to Task 2.2
(Development of the meta-model specifications), the outcomes from this Task which were
reported in D2.1 (Holman & Cojocaru, 2010) are first summarised.

Given the participatory approach to the design and development of the CLIMSAVE
Integrated Assessment Platform (van Asselt & Rijkens-Klomp 2002), we anticipate that the
IAP and the associated meta-models will undergo modifications throughout the duration of
the project in response to progressive stakeholder feedback from the activities of Work
Packages (WP) 1 and 3 and from direct stakeholder engagement via the CLIMSAVE website.
As such, the activities described in this report represent ‘works in progress’, rather than being
‘set-in-stone’.

1.2 References

Holman, I.P. & Cojocaru, G. (2010). Deliverable 2.1 - A report describing the 1A Platform
specification, metamodel specifications and the multi-scale approach. CLIMSAVE EC
FP7 Project 244031.

van Asselt MBA, Rijkens-Klomp N (2002). A look in the mirror: reflection on participation
in integrated assessment from a methodological perspective. Global Environmental
Change, 12: 167-184.
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2. Summary of the development of the meta-model specifications (Task 2.2)

lan Holman' and George Cojocaru?
! Environmental Science and Technology Department, Cranfield University, UK
2 TIAMASG Foundation, Bucharest, Romania

2.1 Summary of Deliverable 2.1

A meta-modelling approach is being used in CLIMSAVE whereby computationally-efficient
or reduced-form models that emulate the performance of more complex models are being
developed to deliver the fast run times required by the IA Platform. For efficient development
of the CLIMSAVE IAP, each of the meta-models (described in the proceeding sections) are
designed to be modular, independent and capable of replacement at any time. A meta-model
specification was therefore developed to ensure successful linkage and integration of the
meta-models, irrespective of the final algorithms inside each of the meta-models. The
specifications have been defined in relation to anticipated stakeholder needs (CLIMSAVE
WP1), the vulnerability framework (WP5), the scenario methodology and climate and socio-
economic scenario variables (WP3) and the requirements of the adaptive capacity
methodology (WP4), plus some redundancy for future development.

The development of the specification went through five distinct stages:

Defining the spatial resolution of the data to be transferred between meta-models;
Identifying and prioritising meta-model inputs and outputs;

Identifying points of contact between the meta-models;

Specifying the data dictionaries for each meta-model,;

Standardising the data dictionaries across all of the meta-models.

ko

For the European scale case study application of the CLIMSAVE IAP, the spatial scale of
data transfer between the meta-models represents a compromise between the scale of
available harmonised datasets, model runtime and spatial detail of the outputs. The higher
the resolution at which the IAP operates, the greater is the number of times that the meta-
models have to run and hence the greater the overall runtime of the IAP. It was agreed that
the European CLIMSAVE IAP would operate at a resolution of 10’ x 10° (10 minute by 10
minute), using the same grid as the Climatic Research Unit’s baseline 1961-90 baseline
climatology (CRU CL 2.1- Mitchell et al., 2003). This represents over 23,000 land-based
grid squares across the CLIMSAVE European case study area. It has similarly been agreed
that the Scottish IAP will use a resolution of 5km x 5km.

In order to deliver the fast web-based response time demanded by this application, a process
of meta-modelling is being carried out on a set of tried and tested desktop models to abstract
the leanest representation consistent with delivering both functionality and speed. Based
upon the state-of-the-art sectoral impact models available to the consortium (as outlined in
the Description of Work), model inputs and output were identified by the modellers and rated
for stakeholder-relevance by the wider CLIMSAVE consortium. For the model inputs, the
prioritisation was based on their relevance to adaptation responses, whilst the model outputs
were prioritised according to perceived stakeholder relevance (e.g. areas at risk of flooding
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and flood damages) and/or policy relevance (e.g. rural land-use allocation for intensive
agriculture, extensive agriculture, abandoned land, etc).

Points of contact were also identified between the meta-models (Figure 2.1) — these are the
linkages and influences between sectors, and represent data transfers between the models.
For example, following the flow arrows from the RUG model in Figure 2.1, the simulated
area, location and type of urban development (“artificial surfaces” and “residential/non-
residential development” from the urban model — RUG) affects the population exposed to
flood risk (“People affected” as estimated by the Flood Model), river basin hydrological
response (“Basin flow” from WaterGAP-H), the land available for agriculture and forestry
(“landuse allocation” from the land allocation model — SFarmMod) and consequently habitat
availability (biodiversity model — SPECIES and LPJ-GUESS).

Within any single simulation of the CLIMSAVE IAP, there will be five components of data
reading and transfers:

1. Data transfers from the user to the meta-models, representing the communication of
input parameter values from the user (slider bars, timeslice, scenarios, etc) to the
models, via the Running Module;

2. Data transfers between the meta-models, where the simulated output from one meta-
model is an input to other meta-models;

3. Data transfers from the IAP database to the meta-models containing, for example, the
input data for a user-selected scenario;

4. Data transfers between the meta-models and the user Interface, as outputs are selected
by the user for display;

5. Data that is read into a meta-model from the meta-model’s own internal dataset.

With the exception of (5), all of the above represent transfers of data which need to be clearly
defined in a transparent way for the consortium. Data dictionaries have therefore been
developed for data associated with (1) — (4), which unambiguously define each variable or
parameter and its characteristics. The final step in the process is the standardisation of the
data dictionaries across all of the meta-models, so that each end (IAP, database or meta-
model) of a data transfer (for example, meta-model to meta-model; or IAP to meta-model)
uses the same data dictionary. This then allows the data transfers in terms of model variables
and parameters to be defined (Figure 2.2).

The meta-models themselves are implemented as Dynamic-Link Libraries (DLL) developed
in various software languages: Microsoft C++, Microsoft C#, Microsoft VB, and Delphi as
both managed and unmanaged code. They will be embedded in the main Running module,
working as one piece of software. The Running module will feed the DLLs with data, run the
DLLs and collect the outputs. The exchange of data will be made available based on
structures of data transferred by pointers to minimise the time required for data exchange. In
this approach, the meta-model is told where to point data within the internal memory, rather
than the data being physically transferred to the model, with consequent time savings given
the number of grid cells (>23,000).

2.2 References

Mitchell, T.D., Carter, T.R., Jones, P.D., Hulme, M. & New, M. (2003). A comprehensive
set of climate scenarios for Europe and the globe. Tyndall Centre Working Paper 55.
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Figure 2.1: Schematic of the data interactions between the meta-models [Ovals - meta-models; open rectangles — data inputs from the
databases; shaded rectangles — meta-model outputs; numbering and large open arrows — order of operation of the meta-models].
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3. Introduction to Task 2.4 - Development and validation of the meta-models
within the 1A platform

lan Holman and George Cojocaru
! Environmental Science and Technology Department, Cranfield University, UK
2 TIAMASG Foundation, Bucharest, Romania

3.1 Summary of Task 2.4

The CLIMSAVE consortium brings together a number of participants with expertise in
developing participatory integrated assessment platforms, such as the Regional Impact
Simulator (Holman et al., 2008a;b), CLIMPACTS (Kenny et al., 2000) and SimCLIM
(Warrick et al., 2005). Participatory 1A platforms are a vehicle for communication, training,
forecasting and experimentation (Welp, 2001, Kasemir et al., 2003, Jager et al., 2008), whose
usefulness is enhanced by the integrated assessment approach which enables stakeholders to
explore / understand the interactions between different sectors, rather than viewing their own
area in isolation. An assessment of stakeholder needs for, and perspectives on, integrated
assessment platforms showed that stakeholders desired to be able to perform their own
integrated assessment - investigating the impacts and adaptive responses of relevance to
themselves, rather than having to rely on the restricted outputs generated from a limited
number of simulations chosen arbitrarily by researchers (Holman et al., 2005; 2008a).
However, stakeholder involvement is discouraged in most 1As by the complex software and
unacceptably long runtimes (Wolfe et al., 2001). Holman et al. (2008a) developed the use of
computationally simpler modelling techniques, so called ‘meta-models’ or ‘reduced form
models’ (Carmichael et al., 2004), within a user-friendly interface and evaluated stakeholder
experience (Holman et al., 2008b).

The development of the CLIMSAVE integrated assessment platform, and its constituent
meta-models, has learnt from this unique process. The following sections describe the
development and validation of each of the meta-models describing key European sectors
(agriculture, forests, water, coasts, biodiversity and urban). The meta-models each simulate a
range of stakeholder-relevant impact indicators and indicators which translate the outputs
from the integrated sectoral models into ecosystem services indicators (Table 3.1). Ecosystem
services cover all key European sectors, such as cultivated ecosystems, forest ecosystems,
inland water ecosystems, coastal ecosystems, natural ecosystems and urban ecosystems. They
closely correspond to the key sectors studied by Working Group Il of the IPCC Fourth
Assessment Report (IPCC, 2007) and enable climate change impacts to be linked directly to
human well-being.

After the following sections which describe each of the meta-models in turn, Section 14

concludes by summarising (Table 14.1) how the stakeholder-relevant indicators simulated by
the meta-models link to the ecosystem services in Table 3.1.
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Table 3.1: List of ecosystem services according to the Millennium Ecosystem
Assessment (MA).

MA category Ecosystem service
Provisioning services Food

Fibre

Fuel/energy

Genetic resources
Biochemical/natural medicines
Ornamental resources
Fresh water
Regulatory services Pollination
Seed dispersal
Pest regulation
Disease regulation
Climate regulation
Air quality regulation
Water regulation
Erosion regulation
Natural hazard regulation
Invasion resistance
Water purification/waste treatment
Cultural services Spiritual and religious values
Education and inspiration
Recreation and ecotourism
Cultural heritage
Aesthetic values
Sense of place
Supporting services Primary production
Photosynthesis
Provision of habitat
Soil formation and retention
Nutrient cycling
Water cycling

3.2 References

Carmichael, J., Tansey, J. & Robinson, J. (2004). An integrated assessment modelling tool.
Global Environmental Change, 14: 171-183.

Holman, I.P., Rounsevell, M.D.A., Shackley, S., Harrison, P.A., Nicholls, R.J., Berry, P.M.
& Audsley, E. (2005). A regional, multi-sectoral and integrated assessment of the
impacts of climate and socio-economic change in the UK: | Methodology. Climatic
Change, 71, 9-41.

Holman, I.P., Rounsevell, M.D.A., Berry, P.M. & Nicholls, R.J. (2008a). Development and
application of participatory integrated assessment software to support local/regional
impact and adaptation assessment. Climatic Change, 90(1-2), 1-5.

Holman, I.P., Rounsevell, M.D.A., Cojocaru, G., Shackley, S., McLachlan, C., Audsley, E.,
Berry, P.M., Fontaine, C., Harrison, P.A., Henriques, C., Mokrech, M., Nicholls, R.J.,
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Pearn, K.R. & Richards, J.A. (2008b). The concepts and development of a participatory
regional integrated assessment tool. Climatic Change, 90(1-2), 5-30.

IPCC (2007). Summary for Policymakers. In: Climate Change 2007: Impacts, Adaptation and
Vulnerability. Contribution of Working Group Il to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change [Parry, M.L., Canziani, O.F., Palutikof,
J.P., van der Linden, P.J., Hansen, C.E. (Eds.)]. Cambridge University Press,
Cambridge, UK.

Kasemir, B., Jager, J., Jaeger, C.C. & Matthew, G. (Eds) (2003). Public Participation in
Sustainability Science. Cambridge University Press, Cambridge.

Kenny, G.J., Warrick, R.A., Campbell, B.D., Sims, G.C., Camilleri, M., Jamieson, P.D.,
Mitchell, N.D., McPherson, H.G. & Salinger, M.J. (2000). Investigating climate change
impacts and thresholds: An application of the CLIMPACTS integrated assessment
model for New Zealand agriculture. Climatic Change, 46(1-2), 91-113.

Warrick, R.A., Ye, W., Kouwenhoven, P., Hay, J.E. & Cheatham, C. (2005). New
developments of the SImCLIM model for simulating adaptation to risks arising from
climate variability and change. In: Zerger, A. & Argent, R.M. (Eds.) MODSIM 2005.
International Congress on Modelling and Simulation. Modelling and Simulation Society
of Australia and New Zealand, December 2005, pp. 170-176.

Welp, M. (2001). The use of Decision Support Tools in participatory river basin
management. Phys. Chem. Earth (B), 26(7-8), 535-539.

Wolfe, A.K., Kerchner, N. & Wilbanks, T. (2001). Public involvement on a regional scale.

Environmental Impact Assessment Review, 21, 431-448.
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4. Development and validation of the snow cover meta-model

Miroslav Trnka
Institute of Agrosystems and Bioclimatology, Mendel University, Brno, Czech Republic

4.1 Snow cover model description

The snow cover meta-model is based on the SnowMAUS snow cover simulator (Trnka et al.,
2010). The core algorithm used in the snow cover model for agrometeorological use
(snowMAUS) was proposed by Running & Coughlan (1988) and was modified by Trnka et
al. (2010). The snowMAUS model operates on a daily time step, with seven key parameters
that govern snow accumulation and melting. Snow melting is usually facilitated by other
factors, such as sublimation, sun-driven ablation and often combined with the influence of
wind. These factors cannot be directly considered due to the nature of the available input data
and were summed into a single empirical factor.

Data was gathered from 1948-2002 from 65 sites across Austria (Figure 4.1), which exhibited
considerable variability in elevation (155-3111 m a.s.l.). Of these stations, 65% were located
at altitudes below 800 m, where most agricultural activity takes place. Four of these sites
within the crop-growing altitude range (Irdning [A], Pabneukirchen [B], Gleisdorf [C] and
Hohenau [D]) were randomly selected and the model calibrated for the period 1948-2002
(Figure 4.1). In order to test newly introduced routines and to verify the stability of the
selected thresholds, an extensive sensitivity analysis using the Monte-Carlo method was
undertaken.

Figure 4.1: Area within which SnowMAUS model was originally calibrated and
validated.

The remaining sites served as independent tests of model performance and included several
high elevation stations where agriculture production was limited to hay production and/or
grazing. The datasets consisted of quality-controlled and homogenised daily surface weather
records, including observations of daily maximum and minimum air temperatures at 2 m
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above the surface, total daily precipitation, precipitation type, daily values of snow cover
height and continuity of the snow cover. Precipitation that was recorded as ‘trace’ was
replaced with 0.0 mm, which had no significant effect on the precipitation totals. The snow
cover volume was expressed in terms of water equivalent in mm. Years with incomplete
observations of snow cover or precipitation during the winter season were excluded from the
analysis. An overview of the station locations is provided in Figure 4.1.

The snowMAUS model effectively captured daily values of snow cover in terms of snow
water equivalent (Figure 4.2) across a large altitudinal gradient. The model was able to
explain, on average, 73% (ranging from 42 to 89%) of the variability in the number of days
with snow during individual seasons and, on average, 81% (ranging from 31 to 97%) of the
variability in the seasonal volume of snow between 1948 and 2002. The snowMAUS model
captured over 96% and 98% of the between-site variability in the number of days with snow
and the volume of precipitation in the form of snow, respectively (Figure 4.2). Despite
acceptable overall performance, the model overestimates snow cover at lowland stations and
underestimates snow cover at high elevations for some seasons; however on the level of long-
term means (as applied in CLIMSAVE) this has marginal importance.
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Figure 4.2: Results of the SnowMAUS model validation at 61 sites in terms of long-term
climatology (1948-2002) of snow cover.

4.2 Development and validation of the SnowCover meta-model

In order to develop a snow cover meta-model based on SnowMAUS that would be applicable
over the wider CLIMSAVE European domain, new datasets were acquired based on the
COST734 database (Trnka et al., 2011). In this database, the 83 sites (Figure 4.3) with high
quality daily weather data needed for SnowMAUS runs were available both for baseline
(1971-2000) climate as well as for climate conditions around 2050 (using three global
circulation models runs and A2 emission scenario). The downscaling of these scenarios was
based on the pattern-scaling technique combining the MAGICC model with the outputs of
three GCMs (HadCM, NCAR and ECHAM). In addition a dataset assuming +5°C warming
(and its regionalization through the pattern scaling technique) was developed to calculate
snow cover parameters under more extreme warming in order to provide the meta-models
with a sufficiently broad range of climate conditions. In all cases (baseline, 2050 A2 driven
scenario and +5°C dataset) for each station and each GCM, a stochastic weather generator
was used to produce 100-year long daily data series in order to increase the sample size.
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Details on the development of the daily scenarios using the pattern scaling technique and the
dataset used is available in Trnka et al. (2011).

The SnowCover meta-model was based on artificial neural networks (ANNSs; Qnet, 2000)
that were calibrated and tested using outputs of the more detailed SnowMAUS model. The
input variables used for the model development include monthly maximum and minimum air
temperatures for months from October till May as well as precipitation means during these
months. In addition, an oceanity index (annual temperature range divided by latitude of the
grid) is used to account for the moderating effect of the ocean. The model was calibrated on
a training set of data that was sampled to cover the whole range of predictors and the
predicted variable, i.e. number of days with snow. The sampling of the calibration dataset
took into account values outside + 1 standard deviation from the mean of each parameter.
This model was then independently tested on the complementary validation dataset in order
to calculate statistics of its performance accuracy. In total, 12 different ANN designs were
tested with the most suitable one being selected on the basis of the variability explained (R?)
and the root mean square error (RMSE). For the final design, 20 different initiations for the
ANN were tested, but no significant difference in the outputs was found.

The Environmental Stratification of Europe

Environmental Zone
B ALN - Alpine North
m BOR - Boreal
NEM - Nemoral
B ATN - Atlantic North
ALS - Alpine South
g CON - Continental
B ATC - Atlantic Central
mm PAN - Pannonian
LUS - Lusitanian
ANA - Anatolian 4
mm MDM - Mediterranean Mountains ™
s MDN - Mediterranean North
MDS - Mediterranean South

Figure 4.3: Location of the 83 sites (black dots) used for the development of the
SnowCover meta-model laid over the environmental stratification of Europe of Metzger
et al. (2005) and Jongman et al. (2006).

Two snow cover meta-models were developed - the first for days with more than 1 cm of
fresh snow (i.e. 1 mm of snow water equivalent) and the second for days with more than 10
cm of fresh snow (i.e. 10 mm of snow water equivalent) which would allow leisure activities
and provide frost protection for crops. The performance of both snow cover meta-models
were evaluated using the explained variability (R?), mean bias error (MBE) and root mean
square error (RMSE) over the validation dataset (Figure 4.4). For days with more than 1 cm
of fresh snow (i.e. 1 mm of snow water equivalent), the fit is good, with a MBE of close to 0,
a RMSE of 2.1 days and more than 99% of the variability explained. The second meta-model
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for days with more than 10 cm of fresh snow (i.e. 10 mm of snow water equivalent) shows
similar accuracy (MBE = 0 day; RMSE = 2.6 days and R® = 0.99).

Additionally to the set of 83 sites on which the meta-model was developed and validated,
data from the ECAD database was used to further test the meta-model performance on a set
of 46 sites where all input parameters were available as well as snow cover information.
These data included snow cover and weather predictors (i.e. daily maximum and minimum
temperature, and precipitation values). Using the ECAD dataset the meta-models were able to
explain over 88% of variability of all parameters with a MBE for number of days with snow
cover of less than 5 days and RMSE of 16 days.
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Figure 4.4. Comparison of the validation runs of the snow cover meta-models for snow
days with more than (a) 1 cm of fresh snow and (b) 10 cm of fresh snow.

4.3 SnowCover meta-model illustrative results
4.3.1 Baseline climate

Once the meta-model was trained and validated, it was then applied across the
CLIMSAVEI10’ European grid to produce a surface of mean snow cover days (Figure 4.5).

Legend: MNo. of Days (> 10 cm) Stow (over
Present

1 25 40 55 TF0O 85 100 115 130

Figure 4.5: Illustrative results for mean number of days with more than 10cm of snow
during the period 1961-1990.
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4.3.2 Climate sensitivity

In order to test the newly developed meta-model routines, an extensive sensitivity analysis
was carried out against changes in temperature (across the range from -2 to +6°C) and
precipitation (from -40 to +40%). The results indicate that in terms of snow cover days,
temperature is the main driving factor. Figure 4.6 illustrates the profound impacts of changes
in temperature on the number of days with snow (without any change in precipitation), whilst
Figure 4.7 shows the lesser effect of precipitation changes.

Legend: Mo, of Days (> 10 ¢m)

Climate Scenario: Temp «2°C

10 25 40 55 70 35 100 115 1

Legend: No. of Days (> 10 cm)

10 25 40 S3 70 85

Climate Scenario; Temp +1°C

100 115 130

Snoie (Cover Legend: No, of Days (> 10 ¢m) Suow Cover

Cimate Scenano_: Tnm =15C

1025

Fry

N

a0 55

BRR
Legend; No, of Days (=~ 10 am}
Cimate Scenario: Temp +2°C

Snow Cover Suow Cover

LLUN )

1025 0 58

00 115 130
Y

?.-,,_.Y
-

Legend: No. of Days (> 10 cm)
Climate Scenario: Tema +4°C

ez

s N
1 $-.,- W
ety g - Y
Y B LN

Snow Cover

N e Legend: No. of Days (> 10 cm)
Snow Cover Clirnate Scenario: Temp - 39C

Legend; Ko, of Days {> 10 om) Snotwe Cover
Present

5 4035 W0 85 100 1

Legend: No, of Bays (> 10 ¢m)
Climate Scenario: Temp +3°C

Swow Cover

A0 2% 40 55 SO0 35

Legend: Ko. of Days (> 10 om)

Swow Cover
Climate Scenario: Temp +6°C

025 40 S5 70 BS 100 115 130
=75

10 25 30 SS 70 35 100 115 130
. Y3

Figure 4.6: Sengiiivity anal

over the temperature range -2°C to +6°C.

Page 15

10 25 40 55 70 85 100 115 130
o

ysis of the snow cover meta-model (>10 cm of fresh snow)




Snow Cover Legend: No. of Days {> 10 cm) Snowe Cover

Clinate Scenario: Preac -20mm

Legend: No. of Days (> 10 om)
Climate Scenaric: Prec -40mm

S S

Snow Cover Legend: No. of Days (> 10 om}
Climate Scenario: Prec -30mm

‘Fiv A .
Snow (over Legend: No. of Days (> 10 cm)
Prasent

Legend: No. of Days (> 10 cm)
Chrmate Scenario: Prec -10mm

Snow (.

10 25 40 S5 70 325 100 1315 130 40 55 70 85 100 115 130
Ty e S = T e

D

Legend: No. of Days (> 10 cm) Snow Cover

Chrmate Scenario: Prec +20mm

Snow (‘over  Legend: No. of Days (> 10 cm)
Climate Scenario: Prac +30mm

Snow Cover Legend: No. of Days (> 10 om)
Climate Scenario! Prec +40mm

@40 oo T 1 5
_IC BT s 132
- ; \

N

1025 40 55 J0 85 00 135 130 anedl 20 20 00 020100 LIS i?yi

Figure 4.7: Sensitivity analysis of the snow cover meta-model (>10 cm of fresh snow)
over the precipitation range -40 mm to + 40 mm per month.

4.4  Climate change scenarios

The meta-model performance was tested for the climate change scenarios available at the IAP

and examples are presented in Figure 4.8. As one would expect (and as the SnowMAUS
model runs for individual locations confirmed), there is a notable tendency towards a
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decrease in the number of days with snow cover that might be considered as suitable for
skiing (i.e. at least 10 cm of freshly fallen snow). Figure 4.8 shows there is tendency for a
significant decline in the number of snow days that is most pronounced in the Alps and other
mountain ranges in southern and central Europe and decreases towards the north and west.
According to the GFCMZ21 scenarios, slight increases are to be expected in northern Sweden.
Slight increases are predicted in parts of the UK, eastern France or Belgium, however the
increase is negligible, being of the order of a few days, thus making the number of days with
significant snow cover close to 10 days or less on average.
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s | 2] Figure 4.8: Example of a climate change
Sows : scenario run (Al scenario with medium
kst D . | climate sensitivity and the GFCM21
= . climate model) for number of days
peiei suitable for skiing i.e. snow cover above 10
- o cm (top left) for the 2050s, (top right) for
21102 - -
the 2050s relative to the baseline
conditions and (bottom left) for the
A “ number of days with continuous snow
' cover, i.e. 3 cm of snow in the 2050s.

While the baseline mean of number of snow days above 10 cm across the CLIMSAVE
domain is 68 days, this will decrease to 52 days with large regional differences under the
GFCM21 scenario. The median period experiences a greater decrease from 45 days under the
baseline climate to 25 days in the 2050s. Even more rapid declines of snow cover are
expected under some of the other GCM scenarios available in the IAP. As the number of
snow days above 10 cm is driven by changes in the temperature and precipitation patterns,
there is no effect of the socio-economic scenario (SES). However the particular SES will
inevitably influence adaptation options and the coping capacity of individual regions that will
be affected by the decline in number of days suitable for skiing or winter oriented tourism.
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4.5 Integrating the SnowCover meta-model with the other sectoral meta-models

Currently, the present version of the SnowCover meta-model is considered as stand-alone,
providing indicators for ecosystem services related to recreation/tourism (Table 3.1). Outputs
may be used to “trim” the results of SFARMOD for particular crops or to define areas that
could be used for winter tourism.
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5.  Development and validation of the RUG urban meta-model

Sophie Rickebusch
Centre for Environmental Change and Sustainability, Edinburgh University, UK

5.1 RUG model description

The Regional Urban Growth (RUG; Rickebusch et al., in prep.) model simulates urban
growth as a function of changes in socio-economic variables (population, GDP per capita)
and societal values (strictness of planning constraints, household location preferences). The
model also takes into account local geography, travel times with the existing infrastructure
and city typology (e.g. mono- versus polycentric).

The RUG meta-model in the IA platform consists of a look-up table of maps of the
proportion of artificial surfaces per 10’ x 10’ grid cell. The appropriate map is selected
according to the slider values set by the user for percentage change in population and GDP
per capita, household preference for proximity to green space versus social amenities,
attractiveness of the coast (scenic value versus flood risk) and strictness of the planning
regulations to limit sprawl. The RUG meta-model then calculates the relative change in
artificial surfaces compared to the baseline map derived from CORINE land-cover 2006
(CLC) and the area of residential and non-residential properties (which are in the same
proportion as in the baseline map). The artificial surface maps were produced by running the
original RUG model (on a1 x 1 km grid) with all possible combinations of input values and
aggregating the data to the 10° grid.

The original European-wide RUG model (Rickebusch, 2010; Rickebusch et al., in prep.) runs
on one NUTS 2 region at a time. It first calculates the expected quantity of artificial surfaces
for the region, based on the linear regression model developed by Reginster & Rounsevell
(2006), which links the proportion of artificial surfaces to the population and gross domestic
product per capita. RUG uses two additional factors, urban type (large city versus smaller
city/rural region) and country, in this regression model. RUG then evaluates the potential for
settlement in each grid cell within the region, based on the cell’s characteristics (e.g. existing
artificial surfaces, distance to the coast) and the parameters entered by the user for planning
and household preferences (e.g. strictness of planning constraints, attractiveness of the coast).
Table 5.1 summarises the internal variables and those set by the user. The new percentage of
artificial surfaces returned for each cell depends on its potential for settlement and on the
total amount of artificial surfaces expected in the region.

The RUG model currently runs on a ‘“growth-only” assumption, so it cannot simulate

shrinkage. If the projected proportion of artificial surfaces is lower than the baseline value, it
returns the latter.
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Table 5.1: Input variables and parameters for the RUG (meta-) model.

Set by user in IA platform Internal to model

Change in population Population

Change in GDP per capita GDP per capita

Housghold preferences for green space / social Current artificial surfaces

amenities

Strictness of planning constraints Distance to coast

Attractiveness of coast Remoteness from medium & large

cities®
Unsuitable areas (e.g. lakes, glaciers)

 Rickebusch et al. (in review)

5.2 Model calibration and validation

A calibration of all the input parameters was carried out in the previous version of RUG,
which covered East Anglia and North-west England. This was done by running simulations
using the baseline data. The parameter values were set, by trial and error, so as to minimise
the difference between the simulated and observed maps, bearing in mind the significance of
each parameter.

When the RUG model was expanded to 25 European countries, further calibration tests were
carried out, particularly for variables such as the strictness of planning constraints, which is
less likely to be transferable as different countries apply different planning regimes. Figure
5.1 shows an example of the difference between RUG results using baseline data and the
observed proportion of artificial surfaces, for different values of the parameter representing
strictness of planning constraints. The value of 0.2 used in the previous version of the model
still gave the best results, although it led to slightly too high values (up to an average of +4%)
in densely-urbanised grid cells. Increasing the parameter value to 0.3 or 0.5 increased the
differences in densely-urbanised grid cells. On the other hand, decreasing the parameter value
to 0.1 led to higher differences at the other end of the scale.

Figure 5.1 also gives an indication of how the model performs generally, given the parameter
finally chosen (0.2, red boxes). The differences between the baseline simulation and the
observed data are on average around 2-3%, with most values falling below 7%. There are
also a few outliers with differences of over 30%. This is probably inevitable with a general
model for Europe, as it cannot capture all the diversity within the simulation area.
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relative difference with RUG results [%]

prop. of artificial surfaces (from 250 m CORINE)
Figure 5.1: Comparison between RUG baseline simulations and observed CORINE data
for four values of the “strictness of planning constraints” parameter. The “bars”

(boxes) extend from the 1% to the 3" quartile (with the median shown by the bold line)
and the dashed lines are the whiskers which extend to the most extreme data point.

Figure 5.2 shows the proportion of artificial surfaces given by a RUG simulation with
“baseline” parameters (no change in population or GDP per capita, household externalities
preference = 2, planning constraints & attractiveness of coast = medium). The results are
similar to the artificial surfaces found in the CLC map, though RUG tends to over-estimate
the artificial surfaces, as shown in the map of the differences between the two (Figure 5.3,
left). These differences are absolute values, which accounts for them being generally greater
in heavily built-up grid cells. In relative terms, the differences tend to be larger in cells with
low densities of artificial surfaces. For example, an absolute difference of 0.8 in a cell which
contains 0.6% artificial surfaces according to CLC is equal to +133.3% relative difference.
On the other hand, an absolute difference of 6.0 in a grid cell which is 55.0% built-up
according to CLC is only +10.9% in relative terms. However, in both cases CLC and RUG
show proportions of artificial surfaces of the same order of magnitude.

There are several causes for the differences between the CLC map and the RUG baseline
simulation, aside from the fact that no model can ever represent reality exactly, but at best
will show similar patterns. RUG is a growth-only model, i.e. it assumes that no artificial
surfaces are removed, even if the population decreases for instance, which accounts for its
tendency to over-estimate artificial surfaces. Negative differences are small and can be put
down to differences in rounding and aggregation from the 1 km to the 10’ grid. Using the
same model parameters, e.g. for planning constraints, throughout Europe has the advantage of
allowing the same model set-up to be applied to the whole study area, but the down side is
that the baseline parameter values will be more suitable for some countries or regions than
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others. Additionally, the regression function linking artificial surfaces with population,
despite including factors for country and large city, only explains 72% of the variation, the
rest being down to other factors, e.g. industrial development due to the presence of coal.

Poriodtage wtBe d ataces
CORNE Larad <o

FERE -

Figure 5.2: Artificial surfaces derived from the CORINE land-cover map (left) and
produced by RUG with baseline parameters (right).

Figure 5.3: Difference in the percentage of artificial surfaces projected by a RUG
simulation with baseline parameters and those in the CORINE land-cover map (left).
The map on the right shows the same data averaged by NUTS 2 region.
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Figure 5.3 (right) shows the mean per NUTS 2 region of the difference in artificial surfaces
between the RUG simulation with baseline parameters and CLC. This gives an overview of
the regions which are best represented in RUG and those in which the model does not
perform as well.

5.3 RUG model outputs and integration with other meta-models

The main variable produced by the RUG model is the proportion of artificial surfaces per 10’
x 10’ grid cell (Figure 5.4), which has a range of 0 to 1 (0-100 %). It is used as a base to
calculate other RUG output variables. It is also an input to the SFARMOD land-use model
(Section 10).

From the above, RUG calculates the percentage difference in artificial surfaces relative to the
baseline value (derived from CLC) for each cell (Figure 5.4). This is used by the WGMM
model (Section 9) to calculate the changes in water flow due to surface sealing.

Artificial surfaces
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Figure 5.4: Example outputs from the IAP showing the proportion of artificial surfaces
(left) and relative change in artificial surfaces (right) for the HadGEM climate scenario
(Al emissions and medium climate sensitivity) combined with the Riders on the Storm
socio-economic scenario for the 2050s.

RUG also calculates the surface of residential (CLC category 1.1) and non-residential areas
(CLC categories 1.2 - 1.4), in square kilometres, within each grid cell. This is based on the
baseline proportions of residential versus non-residential areas in each cell. For example, if a
cell has a baseline value of 1 km? artificial surfaces of which 75 % (0.75 km?) are residential
areas and RUG predicts the artificial surfaces will double, then there will be 1.5 km? of
residential areas. These variables are passed to the CFFlood model (Section 7), to assess
damage and risk to people.

Finally, RUG calculates the average percentage difference in artificial surfaces relative to
baseline value across all cells. This aggregated indicator is displayed on the IA platform, to
give the user a quick indication of the general effect of the settings they have chosen.

5.4 References
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6. Development and validation of the metaGOTILWA+ forest meta-model

Joan Maspons and Santi Sabaté
CREAF, Autonomous University of Barcelona, Spain

6.1 Introduction

MetaGOTILWA+ is used in the IA Platform to simulate the impacts of climate change on
forest ecosystems services such as wood production, carbon balance, etc (Table 3.1), and how
forest management might play a role to mitigate such impacts on the main forest species that
occur over Europe.

MetaGOTILWA+ is based on the GOTILWA+ model. The full GOTILWA+ model requires a
lot of computational time to simulate each forest type, in each location (pixel) in Europe
under different climates and management regimes. Since the IA platform requires a fast
runtime, a new meta-model version has been developed to provide responses in a few
seconds. Neural networks have been used to reproduce GOTILWA+ outputs as a function of
GOTILWA+ inputs.

6.2 GOTILWA+ model description

The GOTILWA+ model (Growth Of Trees Is Limited by WACer,
http://www.creaf.uab.cat/gotilwa+/) simulates carbon and water uptake and fluxes through
forests of different tree species and in changing environmental conditions, due to either
climate or management regimes. The input data include: climate (maximum and minimum
temperature, precipitation, vapour pressure deficit, wind speed and global radiation); stand
characteristics (tree structure and diameter at breast height (DBH) class distribution); tree
physiology (photosynthetic and stomatal conductance parameters); and site conditions
including soil characteristics and hydrological parameters. The processes are described with
different sub-models that interact and integrate the results of simulated growth and evolution
of the whole tree stand through time (hourly calculations integrated at a daily time step).

The light extinction coefficient is estimated by Campbell's approach (1986), based on an
ellipsoidal leaf angle distribution. The photosynthesis equations are based on Farquhar and
co-workers approach (Farquhar & Von Caemmerer, 1982). Stomatal conductance uses
Leuning's approach that modifies the Ball, Woodrow and Berry model (Leuning, 1995). Leaf
temperature is determined based on the leaf energy balance (Gates, 1962; 1980) and
transpiration is estimated according to the Penman-Monteith equation (Monteith, 1965, Jarvis
& Mcnaughton, 1986). Autotrophic respiration is separated into maintenance and growth
respiration. Maintenance respiration is calculated as a proportion of total respiring biomass
(structural and non-structural components distinguished), with rates that depend on
temperature according to a Q10 approach. Growth respiration is a fraction of available
carbohydrates for growth consumed when transformed into new tissues. A constant efficiency
of 0.68 is assumed (g of new tissue / g of carbohydrate). Net primary production (NPP) is
allocated first to form new leaves and fine roots to compensate for their turnover. The
remaining NPP is allocated to the pool of mobile carbon in leaves and woody tissues. The
surplus is invested in new tissues (leaves, fine roots and sapwood) according to the pipe
model (Shinozaki et al., 1964). Soil is divided into two layers, organic and inorganic
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horizons. Soil organic matter (OM) is originated by plant litter: leaves, branches, stems and
reproductive organs aboveground and coarse and fine roots belowground. OM is decomposed
depending on soil temperature (according to a Q10 approach) and soil moisture (optimal at
60% of the maximum soil water-filled porosity). Soil moisture is calculated based on water
inputs and outputs and soil traits. Temperature also affects leaf shedding through a Q10
approach. Root mortality is also dependent on temperature (Q10 approach), soil moisture and
the length of the growing period.

6.3 GOTILWAH+ validation and application

The GOTILWA+ model has been extensively applied in different European projects such as
LTEEF-11, ATEAM, SILVISTRAT and ALARM. To check that the model provides realistic
results, it has been tested against empirical data from the Forest National Inventories as well
as compared with other process based models (see Kramer et al 2002, Morales et al 2005,
Keenan et al 2009a). Within the previous projects, GOTILWA+ has been applied Europe-
wide (see Schroter et al 2005; Keenan et al 2009b,c; Keenan et al 2010).

6.4 Development of the metaGOTILWA+ meta-model

Artificial neural networks (ANNSs) have been developed to emulate the performance of the
GOTILWA+ model but provide results in a few seconds. In order to train the ANN, around
900 cells were selected across Europe to explore the response of GOTILWA+ across all
ranges of environmental conditions (Figure 6.1). These cells were selected to ensure the
representivity of climatic conditions and to include more extreme conditions by selecting
cells with higher and lower values for each input variable (Table 6.1). Simulations were run
from 1950 until 2100 using climatic data from the HadCM3 global climate model for the
A1B emissions scenario. CLIMSAVE is only simulating impacts until the 2050s. However,
including a greater range of projections ensures that extrapolation is avoided because the
climatic conditions of the 2050s will be well captured within the GOTILWA+ simulations.
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Figure 6.1: Sample cells used to train the Artificial Neural Networks. Colors indicate the
region to which the cell belongs.
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Table 6.1: Input variables for the metaGOTILWA+ meta-model.

Variable Definition

Temperature Monthly mean temperature

Precipitation Monthly mean precipitation

Effective soil volume The product of the mean soil depth and the proportion of stones in the
soil

CO, Atmospheric CO, concentration

Forest management Forest management regime (no management, even aged management or

uneven aged management)
Tree species Dominant tree species in the forest

For each cell simulations were conducted for all characteristic species from the region, all
management regimes and with four different levels of effective soil volume to produce the
variables listed in Table 6.2.

Table 6.2: Output variables simulated by the metaGOTILWA+ meta-model.

Variable Definition Ecosystem Service
indicator

Wood yield Wood yield in managed forests Wood production

Net Ecosystem Exchange  Carbon balance of the ecosystem Carbon balance

Net Primary Production Carbon balance of the primary producers Forsslt physiological
viability

Gross Primary Production ~ Total amount of carbon fixed by the trees  Carbon balance

Biomass stock Sum of soil organic matter, aboveground Carbon stock
biomass and below ground biomass

Water stored in soil Amount of water stored in soil Water stress indicator

Length of the growth period Length of the growth period determined by
temperature and water availability

Fast Artificial Neural Networks library (http://leenissen.dk/fann) has been used to build and
run the neural networks. An evolving topology training algorithm (Cascade2) was used which
dynamically builds and trains the ANN.

6.5 Meta-GOTILWA+ validation, illustrative application and sensitivity analysis

The predictions of the ANN were tested against data from cells which have not been used for
training. Although there is inevitable scatter in the example results for Pinus sylvestris
(Figure 6.2), there is a strong 1:1 relationship between the outputs of metaGOTILWA+ and
GOTILWA+. As an illustrative application of the model, Figure 6.3 shows an example of
spatial results across the selected climate zones across Europe in which Pinus sylvestris
grows (continental, boreal and alpine) for the baseline climate applying even aged
management.
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Figure 6.2: Comparison of outputs from GOTILWA+ and metaGOTILWA+ for Pinus
sylvestris under evenaged management with different effective soil depths [GPP - Gross
Primary Production; NPP - Net Primary Production; Ws - Water in soil and Yield].

A sensitivity analysis of metaGOTILWA+ to the main climatic drivers for forest growth,
which are precipitation and temperature, has been carried out. From the baseline climate,
changes in precipitation (-30%, -15%, 0, +15% and +30%), temperature (-30%, 0, +10%,
+20% and +30%), and their interaction were applied. Results for the output variable NPP
(kg/halyear) for the baseline (Figure 6.4) and the more extreme changes (Figure 6.5) are
shown. Both precipitation and temperature impact greatly on forest productivity even though
precipitation is more determining. Increased temperature together with decreased
precipitation has the strongest effect, reducing forest productivity all across Europe. Increased
temperature together with increased precipitation has positive effects on productivity in very
specific areas but it implies a general slight productivity reduction. Decreased temperature
together with increased precipitation increases forest productivity quite uniformly even
though the positive effect diminishes in areas which are already very productive. Decreased
temperature and precipitation leads to varying affects, increasing productivity in some areas
but decreasing it in others. These results show that MetaGOTILWA is sensitive to the tested
climate variables.
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Figur 6.3: Outputs from

metaGOTILWA+ for Pinus sylvestris for
the boreal, continental and alpine regions
using the baseline climate, even aged
management and an effective soil depth of
0.3m (without stones). [GPP - Gross
Primary Production; NPP - Net Primary
Production; Ws - Water in soil].
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Figure 6.4: Results for metaGOTILWA+ for the baseline climate, self thinning
management and an effective soil depth of 0.3m (without stones). [NPP - Net Primary
Production].
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Figure 6.5: Sensitivity analysis for metaGOTILWA+ with self thinning management and
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management and an effective soil depth of 0.3m (without stones). [NPP - Net Primary
Production]. The most extreme sensitivity tests are shown
[-30% Temp-30%Prec; -30%Temp+30%Prec; +30% Temp-30%Prec;
+30% Temp+30%Prec].

6.6 Integration of metaGOTILWA+ with other sectoral meta-models

MetaGOTILWA+ outputs are being used to assess the effects of climate change on European
forests and the ecosystem services provided by them. Some outputs such as wood yield are
passed according to the climatic conditions, soil depth, management and dominant tree
species to the SFARMOD meta-model to include inputs from the forestry sector to optimise
land use (see Section 10).
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7.  Development and validation of the fluvial and coastal flood (CFFlood) meta-
model

Mustafa Mokrech, Abiy S Kebede and Robert J Nicholls
School of Civil Engineering and the Environment, University of Southampton, UK

7.1 Introduction

The Coastal Fluvial Flood (CFFlood) meta-model provides estimates of the socio-economic
and environmental (i.e., floodplain habitat) impacts of future flooding that are attributed to
climate change and sea-level rise in Europe’s coastal and fluvial floodplains®. It also accounts
for future socio-economic changes (e.g., change in population and GDP) by investigating
human pressures under a range of socio-economic scenarios as well as at user-defined options
for exploratory purposes. The modelling is conducted at multiple scales and aggregated to the
10’ spatial grid for the 1AP. The baseline datasets are mostly resampled from higher spatial
resolution datasets (i.e., 100 m resolution CORINE land use data and 100 m flood maps). The
meta-model allows the exploration of a range of plausible adaptation options that are
designed to reduce flood risks and/or to minimise losses of key floodplain habitats. The
impact assessment methodologies and adaptation options are explained in the following
sections.

7.2 CFFlood model description

A conceptual framework of the CFFlood meta-model has been developed to explain the
variables and the main steps for implementing the meta-model. The framework consists of
three main sub-model components: (1) Coastal flood, (2) Fluvial flood and (3) Habitat
change/loss components. These components are coupled and are also integrated to a range of
plausible adaptation measures that allow the analysis of plausible responses to climate change
and sea-level rise.

7.2.1 Coastal flood sub-model component

The framework of the coastal flood component (Figure 7.1) illustrates the main steps
implemented for assessing the impacts of coastal flooding. The method uses the estimated
Standard of Protection (SoP) parameter for analysing the change in flood risk due to the
effect of relative sea-level rise on extreme sea levels. It assumes that SoP decreases and flood
frequency increases with a rise of extreme sea level (e.g. Figure 7.2) (Mokrech et al., 2008):
baseline extreme sea levels are produced by a combination of astronomical tides and
meteorologically-induced storm surges, and future sea levels are increased by sea-level rise.

The flood risk zones are identified by analysing the topography against the regional extreme
sea levels, based on present-day extreme sea levels and relative sea-level rise scenarios, as
appropriate. Consequently the area at risk of flooding is calculated and an estimate of the
people living in the flood risk zones is calculated using population density. A comparison

! Note that intra-urban flooding (Evans et al., 2004a; 2004b) which operates at a smaller scale and via different
mechanisms (e.g., more intense precipitation and overwhelmed drains) is not considered by the CFFlood meta-
model.
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between the extreme water levels and the estimated SoP determines the actual extent of
flooding within these flood risk zones. Hence, the number of people who experience flooding
is determined based on the population within the flooded areas. The flood damages for
residential properties (both contents and structure) are also calculated based on urban areas
and people at risk of flooding, flood water depths, and Gross Domestic Product (GDP),
following the damage curves provided by Linham et al. (2010). The changes in urban areas
are derived from the RUG model (Section 5).
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Figure 7.1: Coastal flooding component in the CFFlood meta-model.
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Figure 7.2: lllustrative example of the change in SoP due to sea-level rise. The 1 in 100
year SoP is degraded toa 1in 6.1 year.
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7.2.2 Fluvial flood sub-model component

The fluvial flood component follows a similar approach to the coastal flood component (see
Figure 7.3). It uses the European fluvial flood maps produced by the JRC Institute using
LISFLOOD simulations at 100 m resolution (Feyen et al., 2011). These simulations provide
flood maps for fluvial catchments (both extent and water depth) with return periods of 2, 5,
10, 20, 50, 100, 250 and 500 years, assuming no flood defences. These maps have been used
as indicative maps of the flood risk zones in the CLIMSAVE project. The fluvial flood model
estimates the land area and number of people living in fluvial flood hazard zones, and people
affected and economic damages due to fluvial flooding. The flood maps are analysed in
conjunction with the CORINE land use data and the results are gridded at the 10’ resolution.
The estimated Standard of Protection (SoP) parameter is used to analyse the change in flood
risk due to changing peak flow (e.g. Figure 4) (Mokrech et al., 2008). The changes in the
peak river flow are derived from the WaterGAP model (Section 8).
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Figure 7.3: Fluvial flooding component in the CFFlood meta-model.
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Figure 7.4: lllustrative example of how the fluvial flood model works: the effect of a
change in peak flow on the standard of protection (SoP).
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7.2.3 Wetland change/loss sub-model component

In addition to damages on people and property and flood constraints on agricultural
production, the CFFlood model also assesses possible changes in the area of floodplain
habitats comprising ‘saltmarsh’, ‘intertidal flats’ and what we term here ‘coastal grazing
marsh’ in coastal floodplains, and ‘inland marshes’ in fluvial floodplains. Changes to these
areas are of interest under the Habitats Directive. Saltmarsh and intertidal flats exist seaward
of defences and are subjected to tides, while coastal grazing marshes are largely artificial
habitats that exist landward of coastal defences in areas that would otherwise be intertidal
habitats. The direct impact of sea-level rise on coastal wetlands is assessed following the
broad scale model of McFadden et al. (2007) (see also Richards et al., 2008). The wetland
change/loss component accounts for both habitat loss and habitat change, where the three
influencing factors of accommodation space, sediment supply, and rate of relative sea-level
rise are considered (see Figure 7.5). Consequently, habitats such as saltmarsh, coastal grazing
marsh and intertidal flat can be either lost under high forcing conditions or can experience
transition under the low to moderate forcing conditions (as shown in Figure 7.6). The direct
effects of sea-level rise and the effects of defence abandonment due to managed realignment
are also included. In river valleys, change in inland marshes is a function of change in river
flows where existing marshes can increase or decrease as a function of change in floodplains.

The CORINE land cover data is used to establish the baseline of the intertidal habitats:
saltmarsh and intertidal flats, and fluvial habitats (inland marshes). However, the designated
habitats landward of coastal flood defences are not defined in the CORINE land cover
dataset. There is no standard European nomenclature for these areas and they are variously
termed: as ‘coastal grazing marsh’ (in the UK), or ‘summer polders’ (in the
Netherlands/Germany) to give two examples. Therefore, to develop a generic methodology,
pasture areas located within the coastal floodplain are assumed to be potential areas for
‘coastal grazing marsh’ and this term is used for all such habitats in CLIMSAVE. If defences
are abandoned or realigned, the new intertidal land experiences a transition to saltmarsh and

intertidal flats.
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Figure 7.5: The three key forcing factors in the change/loss of coastal floodplain habitats
considered in CLIMSAVE.
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Figure 7.6: Example of modelling wetlands loss/change for coastal areas (adapted from
McFadden et al., 2007).

7.2.4 Data pre-processing and indicators

Estimating the indicative level of flood protection across Europe

There is no European level dataset on existing flood protection levels for coastal and river
areas. Hence, the CORINE land use/cover classes in the impact zones has been used to
estimate indicative standards for flood defences (coastal and fluvial) for Europe following the
UK DEFRA methodology (MAFF, 1999). The resulting dataset has been calibrated using
published data on flood protection in individual regions/nations in Europe — for example, the
Netherlands has built an extensive coastal defence system that provides protection up to the 1
in 10,000 year flood event, while the Thames Barrier provides the city of London with
protection against a 1 in 1000 year flood event, and we have the national flood defence data
for England and Wales. This method provides a consistent approach for establishing a
European dataset on flood protection without representing any entitlement or obligation for
achieving these protection levels. Table 7.1 shows the indicative standards of protection for
five land use bands in fluvial and coastal flood zones considering an indicative range of land
use — both the minimum and maximum ranges of fluvial and coastal indicative standard of
protection are adopted for the European region. If better local data can be acquired, this data
will be included.

Topographical data

The SRTM data at 3 arc second (i.e. almost 90 m) spatial resolution and the Gtopo30 data at
30 arc second (i.e. almost 1 km) spatial resolution have been processed to produce a DTM
with full European coverage. The DTM is classified into bands at 0.25 m elevation intervals
along the coastline, covering the maximum range of combined sea-level rise, land subsidence
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and the extreme storm surge of a 1000 year event. This data set is then gridded at the 10’
spatial resolution.

Table 7.1: Indicative standards of protection and land use (from CORINE) (after
MAFF, 1999).

Land Description Land Use (CORINE Indicative standard of
use classes — third level)  protection
band Fluvial Coastal
Return Return
period period
(years) (years)
A Intensively developed urban areas. 111 50-200 100-300
B Less intensive urban areas with some 112, 121, 122, 123, 25-100 50-200
high grade agricultural land and/or 124, 131, 141, 142,
environmental assets. 211, 212, 213,221,
222,223
C Large areas of high-grade agricultural 132, 133 5-50 10-100

land and/or environmental assets with
some properties.

D Mixed agricultural land with occasional 241, 242, 243, 244, 1.25-10 2.5-20
properties at risk of flooding.

E Low-grade agricultural land (often 31, 311, 312, 313, 0-25 0-5
grass) or seasonally occupied properties 321, 322, 323, 324,
at risk. 333

F All other classes 0 0

Extreme sea-level data

Four extreme sea-level events (i.e. the 1 in 1, 1 in 10, 1 in 100 and 1 in 1000 return period
events) and associated land uplift/subsidence (the local geological component of sea-level
change) have been gridded at the 10 resolution. These data are derived from the DIVA
database (Vafeidis et al., 2008).

Socio-economic indicators

The socio-economic scenarios are used to develop a series of socio-economic indicators
relevant to flooding as follows:

e Change in GDP is used to reflect the change in economic conditions and how these
will influence the flood damages of properties’ contents.

e Auverage household size: this indicator allows the number of properties to be estimated
as a function of population. The NUTS3 data set provides the average household size
for the baseline - this data is gridded at 10’ spatial resolution.
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e Population density: the population density is used to estimate the number of people in
flood risk areas. The NUTS3 data set provides this variable for the baseline - this data
is gridded at the 10’ spatial resolution.

7.2.5 Adaptation strategies within the CFFlood meta-model

The adaptation strategies investigated within the CFFlood meta-model are designed to focus
on human safety and/or an environmental emphasis (to sustain or enhance habitats) (see
Table 7.2).

Table 7.2: Adaptation measures for the CFFlood meta-model.

Policies Emphasis on Human Emphasis on
Safety Environment

1. Flood protection upgrade

2. Retreat of flood defences \

3. Flood resilience measures \

4. Mixed response \ v

Emphasis on Human Safety

These adaptation measures aim to reduce flood risks (for people and properties) through the
following three categories:

a) Flood protection upgrade by 50%, 100%, 500% and 1000%: this will be applied directly to
the baseline protection levels and applied uniformly for all Europe.

b) Resilience measures: considering that new properties will not be affected by flooding (e.g.,
by raising them above ground levels) up to a predefined threshold of flood event (i.e., 100
year event), while the old properties will suffer from flood damage.

c) Mixed response: this provides a more realistic adaptation option, where a plausible
combination of flood protection improvement (i.e. 100% upgrade) and retreat of defences
to maintain habitat is investigated.

Emphasis on Environment

This includes the possibility of either maintaining wetland habitat areas at the baseline level
or doubling the area of these habitats. Habitat area losses will be determined using the habitat
model by comparing with the baseline stocks, while the rules for determining candidate sites
for habitat creation (via retreat) include the following:

Retreat rules:

o Retreat will take place in areas inside the floodplains (coastal and fluvial).
e Non-urbanized areas are considered.

Rules at habitat levels:

e Saltmarsh and intertidal flat: the coastal grazing marsh areas that will be changed to
saltmarsh due to a change in salinity in the habitat model will be considered to be
suitable for saltmarsh. Any other areas within the coastal floodplain will be
considered candidate for saltmarsh. It is assumed that areas that are not at the correct
height are raised or lowered to an optimum height. The available areas can be split
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between candidate areas for creating saltmarsh and candidate areas for intertidal flat
(e.g. 50% for each).

e Coastal grazing marsh: assumes all pasture can be considered as candidates for coastal
grazing marsh.

¢ Inland marshes: is based on the baseline estimate and considers the change in peak
flow. The fluvial model assumes that an increase in peak river flow (Qmep) will lead
to larger floodplains and accounts for an increase in the areas of inland marshes of the
same proportion.

7.3 CFFlood meta-model calibration and validation

The input parameters into the CFFlood meta-model have been calibrated using published data
and studies. Figure 7.7(a) shows an example of the coastal flood protection levels used for the
Netherlands (van der Most, 2011) in the calibration of the flood protection dataset produced
from the classification of the CORINE land use/cover data. The flood maps are also verified
using available flood maps, e.g., Figure 7.7(b) shows a good match against the flood map of
the 250 year return period and the 200 year indicative flood map (2003) in the Norfolk region
(in England).

Standard of Flood Protection in the Netherlands
B 1 in 10000 year
- 1in 4000 year
1in 2000 year
1in 1250 year

250 year retun period
=
Indicative floodplain 2003

(a) Flood protection in the Netherlands. (b) Screenshot of the 250 year flood map and
the 200 year indicative flood map for an area
in eastern England (part of Norfolk).

Figure 7.7: Calibrating/validating the input parameters into the CFFlood meta-model.

Figures 7.8 A & B illustrate the effect of the calibrated protection data for the Netherlands,
shown in Figure 7.7, on the model outputs of the number of people affected and damage due
to flooding. Without protection, the outputs reflect the large area of land at risk of flooding,
and hence high impacts on people and properties (as shown in the left top and bottom
figures). The model outputs under the minimum and maximum protection realistically
represent the existing defence systems (Figure 7.7) that protect the extensive low-lying area
behind defences.
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Figure 7.8: Validating output parameters of the CFFlood meta-model: (A) People
affected and (B) Damage, due to a 1 in 100 year flood event at the baseline.

7.4

Integration of CFFlood with the other sectoral meta-models

The CFFlood model interacts with a number of the other CLIMSAVE models, either being
provided with inputs, or providing outputs to later models in the simulation process:

The RUG urban model: Input data on the areas (in sq. km) of residential (CLC category
1.1) and non-residential areas (CLC categories 1.2 - 1.4) within each grid cell is provided
by the RUG meta-model (Section 5) which are used to assess socio-economic impacts.

The WaterGAP water model: Changes in peak river flows (relative change in Qmep) are
derived from the WaterGAP model (Section 8) for use in the analysis of fluvial flood
risk.

The SFARMOD agricultural land use model: The results from the coastal and fluvial
flood analysis are an input to the SFARMOD model (Section 10) — it estimates areas that
are not available for arable farming due to a flood frequency of more than once every 10
years. In addition, areas that are flooded more than once a year are considered not
suitable for any type of farming (Mokrech et al., 2008).

The SPECIES biodiversity model: Outputs on the areas of floodplain habitats are used as
inputs to the SPECIES model (Section 13) to mask the potentially suitable climate space
for individual species associated with saltmarsh and coastal grazing marsh habitats.
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7.5 lllustrative model sensitivity analysis and scenario results

The following two sections provide illustrative model outputs of selected sensitivity analysis
and scenario results of the CFFlood model from the IAP.

7.5.1 lllustrative sensitivity analysis

Figures 7.9 through 7.12 present illustrative sensitivity analysis results for the socio-
economic and environmental flood impacts of a 1 in 100 year flooding events (both coastal
and fluvial) in Europe due to changes in climate and socio-economic drivers including sea-
level rise, population, GDP and level of protection. At the baseline, the European total
impacts due to a 1 in 100 year flooding are approximately: over 24 million ha of land at risk,
over 29 million of people at risk, about 21 million people flooded, and over 133 billion Euros
of damages under the minimum baseline flood protection. When no protection is considered,
damages due to flooding and the number of people flooded increases by a factor of 1.9 and
1.4, respectively, while a maximum protection decreases the impacts by a factor of 0.5 and
0.7, respectively (see Figures 7.10C and 7.11D).

Considering a “what if” scenario of 2m rise in sea level (by 2100), the European total area at
risk of flooding increases by a factor of about 1.1 (Figure 7.9). The number of people at risk
(threatened people) also increases by up to about 36 million people — a factor of 1.2 (Figure
7.10). Considering the minimum protection, the impacts on properties (both structural and
contents damage) (Figure 7.11A) and people (actually flooded) (Figure 7.10A) grows by
factors of about 2.8 and 1.7, respectively.

Similarly, changes in population and GDP affect the potential impacts significantly. For
example, a 50% increase in the European population at the baseline increases the total
European socio-economic impacts by a factor of about 1.6 (Figures 7.10B and 7.11B).
Furthermore, a 180% increase in GDP at the baseline increases economic damages by a
factor of 2.4 (Figure 7.11C).

30
mArea at risk of flooding (million ha)

28
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20
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Figure 7.9: The sensitivity of the area at risk of a 1 in 100 year flooding event (million
ha) for different amounts of sea-level rise.
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Figure 7.10: The sensitivity of impacts of a 1 in 100 year flooding on people due to: (A)
sea-level rise, (B) population change, and (C) change in level of protection. Note: (A)
and (B) are run with minimum level of protection.
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Figure 7.11: The sensitivity of economic damages for properties due to a 1 in 100 year
flooding in Europe to: (A) sea-level rise, (B) population change, (C) GDP change, and
(D) change in level of protection. Note: (A), (B), and (C) are run with minimum level of
protection.
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Figure 7.12 illustrates the sensitivity of coastal habitats to sea-level rise (by 2100). Two
metres of sea-level rise leads to a significant loss of saltmarshes and intertidal flats from 268
thousands ha and 677 thousands ha (at the baseline) to 40 thousands ha and 179 thousands ha
(by 2100), respectively. This is a reduction of 85% and 74%, respectively.
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Figure 7.12: Loss of saltmarsh and intertidal flats in Europe due to sea-level rise by
2100, under minimum level of protection.

7.5.2 lllustrative scenario results

Figure 7.13 illustrates scenario results of the CFFlood model outputs due to a 1 in 100 year
flooding from the IAP based on selected climate and socio-economic scenario default settings
for the 2020s and 2050s (see Table 7.3). Under these scenarios, the European total socio-
economic impacts range between 19 to 22 million people affected and 142 to 159 billion
Euros of economic damage by the 2020s (Figures 7.13 A & C). These impacts increase up to
25.3 million people affected and 278 billion Euros of economic damage by the 2050s
(Figures 7.13 B & D). The relatively high number of people affected by flooding (by the
2050s) is experienced under the Should | Stay or Should I Go scenario, which is associated
with the highest growth in European population and an increase in the number of people
living in floodplains. Similarly, higher economic damages are expected under the We Are the
World and Riders on the Storm socio-economic scenarios, which are associated with a high
growth in GDP (see Table 7.3).
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Table 7.3: Selected climate and socio-economic scenario settings used to illustrate
scenario results of the model.

Climate Scenario

Timeslice 2020s (Default) 2050s (Default)
Emissions Al Al

Climate model CSMK3 CSMK3
Climate sensitivity Middle Middle

Sea level change +0.09 m +0.21'm

Socio-economic Scenario

2020s (Default)

2050s (Default)

Scenario Population change | GDP change | Population change | GDP change
(%) (%) (%) (%)

We are the World -7 26 3 94

Icarus 5 0 -9 0

Should | Stay or 5 0 23 -36

Should | Go

Riders on the Strom 5 0 16 54

Level of protection

Minimum protection

Minimum protection

Threatened people (million people) mPeople flocded (million people)

50

40

30

20

-

Threatened people (million people) = People flooded (million people)

0 0

Riders on the
Storm

We Are the World learus Should | Stay or  Riders on the We Are the World learus Should | Stay or
Should 1 GO Storm Should | GO
A Socio-economic Scenarios (2020s) B Socio-economic Scenarios (2050s)
400 m Damages due to flooding (billion Eures) 400 m Damages due to flooding (billion Eures)
300 300
200 200

100

We Are the World

C Soci

0 l I I

Should | Stay or  Riders on the

lcarus

Should | GO Storm

icS ios (2020s)

100

0 I . .

Riders on the
Storm

We Are the World lcarus Should | Stay or
Should | GO
D Socio-economic Scenarios (2050s)

Figure 7.13: The impacts of a 1 in 100 year flooding due to climate and socio-economic
change by the 2020s and 2050s under different socio-economic scenarios and CSMK3
climate scenario (see Table 7.3). Note that the default minimum protection is considered

here.
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8.  Development and validation of the WaterGAP water resources and water
use meta-models

Florian Wimmer, Stephanie Eisner and Martina Florke
Center for Environmental Systems Research, University of Kassel, Germany

8.1 WGMM model description

The WaterGAP meta-model (WGMM) is used in the IAP to assess the impacts of global
change on water resources and water use in Europe. WGMM is designed to be a surrogate for
the global hydrology and water use model WaterGAP (Water - Global Assessment and
Prognosis), which has been developed at the Center for Environmental Systems Research
(CESR) to provide an integrated perspective of the impacts of global change on the water
sector (Alcamo et al., 2003; Doll et al., 2003). WaterGAP consists of two main components:
a global hydrology model and a global water use model.

In order to achieve a very short runtime, the spatial detail of WGMM s reduced from more
than 180,000 grid cells of WaterGAP3 for Europe to about 100 spatial units larger than
10,000 km2. Those spatial units, hereafter referred to as river basins, are made up either by
single large river basins or clusters of smaller, neighbouring river basins with similar hydro-
geographic properties. For each river basin, the meta-model simulates the output parameters
given in Table 8.1, which are long-term statistics of the corresponding WaterGAP3 results for
30-year time periods. Moreover, WGMM output parameters related to river flow, i.e. Qgs,
Qavg, Qs, and Qmed, are downscaled to the 10” X 10° grid cells used by other meta-models in
the 1AP.

Table 8.1: WGMM output parameters.

Model output parameter Description Spatial level

Qavg (M3/s) Long-term average river discharge Grid cell

Qos (M3/s) Low flow river discharge (exceeded in 95% of the days) Grid cell

Qs (m3/s) High flow river discharge (exceeded in 5% of all days) Grid cell

Quned (M3/s) Flood flow, median of the annual maximum daily Grid cell
discharge

Ecosystem service indicator Difference of Qs and Qgs normalized by Qqq Grid cell

(ESI) for flow regulation

Water availability (mil. m3/y)  Annual renewable water resources River basin

Water available for agriculture ~ Water availability minus water consumption in other River basin

(mil.m3/y) sectors

Water availability per capita Ratio of water availability and number of people River basin

(m3/caplyear)

Total water use (mil. m3/y) Total water use (withdrawals and consumption) River basin

Water stress indicator (-) Water withdrawals-to-availability ratio River basin

ESI for drinking water Satisfaction of water demand (withdrawals) in domestic River basin

provision sector

ESI cooling water Satisfaction of water demand (withdrawals) in thermal River basin

electricity production
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8.1.1 The WGMM hydrology model

The aim of the hydrological model WaterGAP is to simulate the characteristic macro-scale
behaviour of the terrestrial water cycle in order to estimate water availability. Based on the
time series of climatic data, the hydrological model calculates the daily water balance for
each grid cell, taking into account physiographic characteristics, such as soil type, vegetation,
slope, and aquifer type. Runoff generated on the grid cells is routed to the catchment outlet
according to a global drainage direction map (Lehner et al., 2008), taking into account the
extent and hydrological effects of lakes, reservoirs, dams and wetlands. The model is
calibrated by adjusting one free parameter, which controls the fraction of total runoff from
effective precipitation in order to minimise the error in simulated long-term annual discharge.

For the current version, WaterGAP3, the spatial resolution of the model raster has been
increased from 30’ x 30’ to 5° x 5°. Partly enabled by this finer spatial resolution, the process
representations of runoff formation and runoff concentration in the hydrological model have
been substantially improved, including:

e Revision of the snow dynamics on the sub-grid scale (Verzano & Menzel, 2009);

e Representation of permafrost occurrence directly affecting groundwater recharge (aus
der Beek & Teichert, 2008);

e Implementation of a variable flow velocity algorithm (Schulze & D0ll, 2004);

e Introduction of a meandering factor to improve the representation of river length
(Lehner et al., 2008);

e Estimation of potential evapotranspiration and ground water recharge taking into
account Koppen’s climatic regions (Weil3, 2009);

e Implementation of dams from the Global Reservoir and Dam Database (GRanD) and
the European Lakes and Reservoir Database (ELDREDZ2) in order to consider
anthropogenic flow regulation (D61l & Fiedler, 2009).

These model revisions are a prerequisite for the application of WaterGAP3 to analyse the
hydrological extremes in addition to long-term water availability. The model’s general ability
to simulate flood discharges has been evaluated by Verzano (2009).

The meta-model makes use of a look-up table populated with the results of 273 pre-run
WaterGAP3 simulations, aggregated for river basins, driven by monthly CRU climate input
(Mitchell & Jones, 2005) with simultaneously modified mean temperature and precipitation.
A constant offset was added to all values in the input time series of temperature leading to a
shift in mean annual temperature while the dynamics are not changed. The manipulation of
precipitation was done in a similar manner except for multiplying the values by a factor
instead of adding an offset. The applied temperature variations range from 0.0 to +6.0 K in
steps of 0.5 K while precipitation variations range from -0.5 (-50%) to 1.5 (+50%) in steps of
0.05.

During the runtime, the WGMM derives the change in temperature and precipitation for the
individual river basins from the 10’ climate input provided by the IAP as compared to the
baseline. According to these changes, the corresponding river basin-level changes of the flow
parameters Qavg, Qos, Qs, and Qmeq are taken from the look-up table and are subsequently
downscaled to the IAP grid using a pattern scaling technique. The model works with a 10* x
10’ raster dataset representing the baseline conditions for all flow parameters. In order to
calculate river flow under climate change on a grid cell-level, each raster value is multiplied

Page 48



by a factor representing the relative change in the given flow parameter. There is exactly one
factor for each river basin, while each grid cell entirely belongs to exactly one river basin.

8.1.2 The WGMM water use model

WGMM provides simplified estimates of water withdrawals (WW) and water consumption
(WC) in the domestic sector, in manufacturing industry, and in thermal electricity production.
The modelling approach is based on gridded results (5’ x 5”) of WaterGAP3 for the base year
2005 (EU FP6 project SCENES), which were aggregated to the river basin level.

In WaterGAP3, the domestic sector includes household use, small businesses and other
municipal uses. The basic approach of the domestic water use model is to first compute the
domestic water use intensity (m®/cap-year) and then to multiply this by the population of
water users. Changes in water use intensity are expressed by structural changes and
technological changes (Alcamo et al., 2003; Florke & Alcamo, 2004, Florke et al., in press).
The concept of structural change is based on the observation that as average income
increases, water consumers tend at first towards a more water-intensive lifestyle. Finally, a
maximum level is reached after which the per capita water use is either stable or declines. In
this way, human behaviour is covered. The relationship between water use intensity and
income (GDP/capita) is derived for each country by a fit to historical data. Water use is then
downscaled to river basins according to the spatial distribution of population across Europe.

WaterGAP3 simulates WW in the manufacturing sector on a country scale based on the
specific structural water use intensity, i.e. the ratio of water use to the manufacturing gross
value added (GVA), which is derived from the base year (FIorke & Alcamo, 2004, Florke et
al., in press). The product of country-specific water use intensity and the scenario values for
GVA yields the country wide WW, which are re-scaled to river basins according to sub-
national statistics and the spatial distribution of urban population.

In WaterGAP3, the amount of freshwater abstracted for cooling purposes in thermal
electricity production is computed for each power plant as the product of the annual thermal
electricity production (TEP in MWh) and the water use intensity of the power station
(m*/MWHh). The total annual cooling water needs in a river basin are then calculated as the
sum of the withdrawals of all power plants located within the region (Vassolo and Déll, 2005;
Florke et al., 2011; Florke et al., in press).

In the meta-model, WGMM, the water withdrawals in a river basin are calculated as
Ds,c
VVs,r = 2321 Ws r E St Sp Fs,r,c (8-1)

where  are the baseline WW in the river basin, D is the main model driver in the scenario
and d'is the main model driver in the base year. The subscripts denote the water use sector s,
the river basin r, and the country c. The factors s; and s, represent water savings due to
technological improvements and water savings due to behavioural change, respectively. Fs, .
are weighting factors used to translate the country-level relative change in the main driver to
the water withdrawals at the river basin scale. There is one set of weighting factors per water
use sector s and river basin r calculated as
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Fre = 2 with Xiy Fype =1 (82)

where s are the baseline WW in sector s allocated to the spatial intersection of country c
and river basin r and n is the number of countries covered by the model (28). In order to
compute WC in the various sectors, sectoral WW are multiplied by a sector-specific
consumption factor, derived separately for each river basin as the WC-to-WW ratio.

For each sector, a different main model driver (D and ¢) is used. In addition, a number of
calculation steps differ among the sectors as described in the following:

Domestic sector

The main model driver for domestic water use is the product of population and structural
water use intensity (S). The latter depends on income and specifies the domestic WW per

person and year. For this purpose, a sigmoidal curve S = a + b(l — e“*’z) was fitted to
historical data, where I is income and a, b, and « are curve fitting parameters.

The minimum threshold for annual domestic water withdrawals, Wpn, in a river basin is
calculated as the number of inhabitants multiplied by 18.25 m3/person (50 litres per capita
and day). If the result of Equation 8.1 falls short of this threshold because of small values for
Sp and s;, the final estimate of domestic WW is set to Wpjn.

Manufacturing industry

The main model driver for manufacturing water use is GVA. In order to limit the water
savings due to technological improvements in this sector, the lower limit for s; in
Equation 8.1 is set to s; =0.6. Water savings due to behavioural change are not taken into
account in the calculation of manufacturing WW, i.e. a value of s,=1 is used.

Thermal electricity production

The main model driver for cooling water use in the energy sector is thermal electricity
production (TEP in MWh). The lower limit for the technological change factor is defined as
st =0.8 in this sector. Water savings due to behavioural change are not taken into account in
the calculation of cooling WW, i.e. a value of sp=1 is used.

Technological improvements of water use intensity in the energy sector are mainly achieved
by a conversion of the cooling system from once-through cooling to tower cooling. In
Europe, average water withdrawals per MWh in once-through cooling systems
(~112m3/MWh) are about 45 times higher than in tower cooling systems (~2.5 m3/MWh). At
the same time, the consumption factor also strongly depends on the type of the cooling
system. The average consumption factor of European power plants with tower cooling (0.53)
is about 66 times higher than with once-through cooling systems (0.008). From these figures,
the relationship between the average water consumption factor and the percentage share of
tower cooling systems can be derived (Figure 8.1a). Further, a given s; -value can be
converted into a fraction of power plants with tower cooling systems, defining s; =1 for a
reference fraction of 57% tower cooling in the year 2005 (Figure 8.1b). In combination, this
yields a non-linear relationship between the normalised consumption factor
Cnorm=Cscenario/C2005 and s;, which can be approximated by a regression function (Figure 8.1c):
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Cnorm (S¢) ~ 0.959 s/ 1111 (8.3)

Finally, the consumption factor in the scenario Cscenario=C2005*Cnorm(St) 1S used to calculate WC
in the energy sector.

a) b) c)
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Figure 8.1: (a) Consumption factor as a function of the percentage of tower cooling: 57% of
power plants equipped with tower cooling in 2005 corresponds to S; =1; (b) relationship between
the s; -factor and the percentage of power plants with tower cooling; and (c) non-linear
regression function used to calculate the normalised consumption factor as a function of the s; -
factor.

8.2 WGMM model calibration and validation

The modelling approach for hydrological parameters in WGMM is mainly a reproduction of
WaterGAP3 results. WaterGAP3 is a state-of-the-art hydrological model for the continental
to global scale with a focus on the reliable estimation of long-term water resources and water
use. Information on the calibration and validation of WaterGAP3 itself can be found in the
literature listed above. In the following paragraphs, it is demonstrated that the additional
model uncertainty caused by the major simplifications of the meta-model is still acceptable
for the purpose of the IAP.

The daily WaterGAP3 simulations of river discharge that are used to derive Qmed, Qgs and Qs
(see Table 8.1) are based on monthly precipitation input, i.e. only total monthly precipitation
and the number of rain days per month are known. The model disaggregates this kind of
precipitation input to daily values using a statistical approach that leads to a considerable
reduction in the day-to-day variability in the resulting ‘pseudo-daily’ precipitation time series
as compared to observations. However, a comparison of simulated versus observed
discharges for European gauging stations where daily time series for the period 1971-2000
are available shows fairly good agreement for Qmeq, Qs and Qs (Figures 8.2, 8.3 and 8.4).

Another simplification of the meta-model approach is related to the technique to transfer river
basin changes of river discharge to the 10’ grid of the IAP. This downscaling is done by
multiplyling gridded baseline values by the relative changes at the river basin outlet.
Implicitly, this method assumes a uniform relative change in discharge for all segments of a
river network although runoff generation and river routing is actually a non-linear process.
Hence, there is in general a difference between WGMM results and corresponding
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aggregated WaterGAP3 output on the grid cell level as soon as climate input differs from the
baseline. Note, that the baseline grids are derived by spatial aggregation of WaterGAP3
output (5°) to the IAP grid (10”) using the same aggregation routine. The maps in Figure 8.5
show the relative deviation of Q. Simulated by WGMM from aggregated WaterGAP3
output for Qavg. The maps indicate that: (i) in major parts of Europe the deviation is between
+5%, (ii) WGMM tends to overestimate Qayg, and (iii) the overestimation of Qayy increases
with increasing precipitation.
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Figure 8.2: Simulated vs. observed flood
parameter Qmeg for 25 gauging stations
across Europe, dashed line = 1:1 line, red
(solid) line = linear fit.
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Figure 8.3: Simulated vs. observed high
flow parameter Qs for 25 gauging stations
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For the baseline, the estimates of WW and WC by the meta-model are simply aggregates of
the original model output of WaterGAP3, which was validated against the best data sources
available (Florke et al., in press). In a scenario calculation, the estimates for the baseline are
scaled proportionally to the relative change in the main drivers of water use. In order to test
the performance of the meta-model to approximate the original WaterGAP3 results for a
scenario run, the model outcomes of both models were compared for the “Economy First”
scenario, which was defined in the EU FP6-Project SCENES (Figure 8.6). The comparison
shows that the results of the meta-model very closely match the WaterGAP3 results for
manufacturing WW (R2=0.998). For WW in the domestic sector (R2=0.975) and thermal
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electricity production (R?=0.975), the model accuracy is somewhat lower but the model still
provides a reasonable estimate of future water demand based on given scenario assumptions.

Change in climate Input:
Pracipitation: -25 %
Temperature: +2.0 K

Change in climate input:
Procipitation: 425 %
Temperaturs: +2.0 K

| I T

o Y Y - . .
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Figure 8.5: Relative deviation of Qayy simulated by WGMM from Q. simulated by
WaterGAP3  (Qag(WGMM)/Qag(WaterGAP3)-1) assuming uniform changes in
temperature and precipitation across Europe. Left: temperature +2°C / precipitation -
25%; right: temperature +2°C / precipitation +25%. (Grid cells with Qayy < 2 m3/s not
greyed out).
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Figure 8.6 Scatter plots comparing meta-model results and WaterGAP3 results of WW
in the domestic sector, manufacturing, and thermal electricity production on river basin
level for the scenario “Economy first” (FP6-Project SCENES) in 2025 and 2050.

8.3 Integrating WGMM with the other sectoral meta-models

Water use in the agricultural sector is not covered in the WGMM since it is calculated by the
agricultural land use meta-model SFARMOD (Section 10). Nevertheless, SFARMOD takes
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into account an estimate of WGMM regarding the available water for agricultural use, i.e.
mainly irrigation, as the maximum allowed water withdrawals for irrigation.

In order to estimate the amount of water available for agriculture on the river basin scale,
WGMM balances the water availability and a “first guess” of total water consumption. The
latter is the sum of the projected non-agricultural water consumption plus the agricultural
water consumption in the base year. If this demand can be satisfied, water availability for
agriculture in the river basin is calculated as water availability reduced by non-agricultural
water consumption. In the case of a potential water shortage, a ‘water sharing rule’ is applied
uniformly across all affected river basins to distribute the available water resources to
different sectors. The share of water resources falling upon agriculture is passed to
SFARMOD. The default rule is to split water resources proportional to the base year
conditions. However, the user of the IAP can choose between several rules (Table 8.2).
Finally, SFARMOD returns the amount of water actually used in agriculture, which is taken
into account by WGMM to correct the “first guess” water use estimates if necessary.

WGMM is also linked to the meta-models SPECIES (biodiversity; Section 13) and CFFlood
(flood damages; Section 7). In these cases, WGMM provides input for SPECIES (Qavg, Qous,
Qs) and CFFlood (Qmeg) but no feedback to WGMM is taken into account. For further
information on how WGMM output is used by these meta-models see Sections 7 and 13.

Table 8.2: Water sharing rules currently implemented in WGMM. Abbreviations: WC is water
consumption (in 2005), r is the sector share, dom=domestic, man=manufacturing, ele=thermal
electricity production, Q95 is the river discharge exceeded in 95% of the time.

Name Priority Maximum share Maximum share other sectors Water for nature
sector priority sector

Baseline - Proportional to WC in 2005 -

Prioritising - - Relative share as in 2005 2* Qgs

environmental

needs

Prioritising Agriculture up to 0.8 if rgom=WCeom/WCsum -
food (irrigation) needed Iman=WChan/WCsym
production re1e=WCe1o/ WCg,m With

WCsum: WCd0m+WCman+WCele

Prioritising Sector with Up to 0.9 if Foreachnon-prioritysectoriupto -
most highest WC needed WCi/(WCiotai-W Cpriority sector)

important in 2005

sector

8.4 lllustrative examples of scenario simulations

In this section, results for the CLIMSAVE scenario “We are the world” in combination with
the climate projection by the CSMK3 model (Al emission scenario, middle climate
sensitivity) are used to illustrate the model output parameters of WGMM. The simulation was
carried out with a standalone version of the model. Hence, agricultural water use is not
considered because of the missing link to the SFARMOD meta-model (WW and WC in
agriculture=0).
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In WGMM, simulated water availability only depends on climate conditions. The climate
scenario used for this example projects a temperature change between +1°C in Western
Europe and more than +6°C in the very north of Scandinavia (Figure 8.7). At the same time,
the precipitation change ranges from -30% in southern Europe to +20% in northern Europe
(Figure 8.7). These changes in climate correspond to a change in simulated water availability
between -76% and +21% (Figure 8.7).
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Figure 8.7: Climate input to WGMM, given as T(emperature)-change (top-left) and
P(recipitation)-change (top right); water availability (WA) in the year 2005 (bottom left) and
change in WA by 2050 (bottom right) for the climate scenario CSMK3/Al/middle sensitivity.

The relevant socio-economic inputs from the scenario “We are the world” (percentage change
until 2050) for modelling of water use was:

3% population growth - factor 1.03

88% increase in income (GDP/cap)

94% increase in GVA (gross value added) - factor 1.94

29% water savings due to technological improvements - factor 0.71
45% water savings due to behavioural change - 0.55

78% reduction of TEP (thermal electricity production) - factor 0.22

Domestic WW are reduced considerably between 2005 and 2050 (Figure 8.8, top row)
because of the water savings due to technological improvements and behavioural change. In
total, the savings (61%) over-compensate by far for the additional WW due to population
growth and increasing income. An 88% increase in income results in changes in the country-
specific structural water use intensity across Europe by a factor of 1.0-1.33. Hence, the
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overall change in domestic WW in the various river basins

(0.71*0.55*1.03*1.0=0.40) and -47% (0.71*0.55*1.03*1.33=0.53).
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Figure 8.8: Water withdrawals (WW) in the domestic sector (top row), manufacturing industry
(middle row), and for cooling in electricity production (bottom row) in the year 2005 (left
column) and 2050 in ""We are the world" (right column).
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A uniform increase in GVA by 94% across all European countries in combination with 29%
water saving due to technological improvements results in a 38% increase in manufacturing
WW in all river basins (1.94*0.71~1.38) (Figure 8.8, middle row). Water withdrawals in
thermal electricity production show a uniform decrease by 84% because thermal electricity
production decreases by 78% in combination with 29% water savings (0.22*0.71~0.16).

Summing up the different sectors, the total change in WW in the domestic sector,
manufacturing industry, and thermal electricity production ranges between -87% and +12%.
The actual value in a river basin depends on the percentage share of WW falling upon the
individual sectors.

The water exploitation index (WEI) integrates climate change impact on WA and change in
water use due to socio-economic change. This water stress indicator is defined as the ratio of
WW to WA. WEI values below 0.2, between 0.2 and 0.4, and above 0.4 indicate low,
medium, and severe water stress, respectively. Figure 8.9 shows the WEI in the baseline and
in the year 2050. A considerable decline in WW in combination with a slight increase in WA
reduces water stress levels from “severe” to “medium” in a number of river basins, e.g., in
northern France and the Benelux countries. In regions with declining WA, e.g. south-eastern
Spain, the water stress level increases despite the reduction in WW. Note that water stress
levels are underestimated in this example simulation because agricultural water use is not
considered.

WEI [-] in 2005

10
10

WEI [-] in 2050

We are the world
(A1/middle/CSMK3)

We are the world
(A1/middle/CSMK3)

08
08

06
086

0.4
0.4

F
ﬂ

Figure 8.9: Water exploitation index (WEI) in the baseline (2005) (left map) and the year 2050
(right map) under the ""We are the world" socio-economic scenario and the CSMK3 climate
scenario with Al emissions and middle climate sensitvity. Water stress levels are
underestimated because agricultural water use is not considered in the stand-alone WGMM.

Page 57



8.5 References

Alcamo, J., Déll, P., Henrichs, T., Kaspar, F., Lehner, B., Rosch, T. & Siebert, S. (2003).
Development and testing of the WaterGAP 2 global model of water use and
availability, Hydrolog. Sci. J. 48, 317-337.

Aus der Beek, T. & Teichert, E. (2008). Global permafrost distribution in the past, present
and future, Proc. 9th International Conference on Permafrost, Fairbanks, USA, 29.6.-
3.7.

Doll, P., Kaspar, F. & Lehner, B. (2003). A global hydrological model for deriving water
availability indicators: model tuning and validation, J. Hydrol., 270, 105-134.

Doll, P. & Fiedler, K. (2009). Global-scale analysis of river flow alterations due to water
withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413-2432.

Florke, M. & Alcamo, J. (2004). European Outlook on Water Use, Technical Report prepared
for the European Environment Agency. Kongens Nytorv. 6. DK-1050. Copenhagen,
DK URL.: // http: scenarios.ewindows.eu.org/reports/fol949029.

Florke, M., Bérlund, I. & Teichert, E. (2011). Future changes of freshwater needs in
European power plants. Management of Environmental Quality: An International
Journal 22(1): 89-104.

Lehner, B., Verdin, K. & Jarvis, A. (2008). New global hydrography derived from
spaceborne elevation data, Eos, Transactions, AGU, 89(10), 93-94.

Mitchell, T.D. & Jones, P.D. (2005). An improved method of constructing a database of
monthly climate observations and associated high-resolution grids. Int. J. Climatology,
25, 693-712.

Schulze, K., Hunger, M. & Ddll, P. (2005). Simulating river flow velocity on global scale,
Adv. Geosci., 5, 133-136.

Vassolo S. & Ddll P. (2005). Global-scale gridded estimates of thermoelectric power and
manufacturing  water use. Water Resources Research, 41, WO04010,
DOI:10.1029/2004WR003360.

Verzano, K. & Menzel, L. (2009). Hydrology in Mountain Regions: Observations, Processes
and Dynamics, IAHS-Publication 326, Snow conditions in mountains and climate
change - a global view, pp 147-154.

Verzano, K. (2009). Climate change impacts on flood related hydrological processes: Further
development and application of a global scale hydrological model, Ph.D. thesis,
International Max Planck Research School on Earth System Modelling, University of
Kassel, Germany.

WeilR, M. (2009). Modelling of global change impacts on hydrology with focus on Europe
and Africa, Ph.D. thesis, University of Kassel, Germany.

Page 58



9. Development and validation of the crop yield meta-models

Miroslav Trnka
Institute of Agrosystems and Bioclimatology, Mendel University, Brno, Czech Republic

9.1 Development of the crop meta-models

The development of the crop meta-models focused on estimating five variables needed by the
whole farm model SFARMOD (Section 10), i.e.

Mean water- and nutrient-limited yield (Yield_Av);

Mean water-limited yield (Yield_POT);

Mean water- and nutrient-unlimited yield (YieldPOTI); and
Sowing date (Sowing) and harvest date (Harvesting).

The development of the crop meta-models for the IAP was affected by the following
considerations:

=

A relatively demanding time scale for the crop meta-models to be available and

integrated into the 1AP;

2. Pan-European coverage for all major crops was required;

3. Several yield levels (e.g. potential as well as water- and nitrogen-limited yields) were
required; and

4. The meta-models should include the CO, fertilisation effect.

As a result of the above requirements, the CLIMSAVE team opted to use the full agricultural
model ROIMPEL that has been validated in previous studies (e.g. Mayr, 1996; Rounsevell et
al., 2003, Audsley et al., 2006; Alexandrov, 2006) and used in similar though smaller scale
studies (e.g. Audsley et al., 2008; Henseler et al., 2009). In addition ROIMPEL was applied
as the principal crop model in earlier FP5 projects e.g. ACCELERATES and ACELCEEC
and its outputs used in a number of others (e.g. CECILIA, AGRIDEMA, ADAGIO).

The major advantage of using ROIMPEL is the considerable amount of results available from
past EU projects. The data available for the development of meta-models included outputs of
the full ROIMPEL model for EU-15 and most of the central and eastern European countries
for the baseline climate and 2050 Low, Medium and High climate scenarios. Runs for the
period centered around 2080 were also available for more than 50% of the territory. The
available outputs of ROIMPEL are actual, potential and irrigated crop yields and crop sowing
and maturity dates. The strengths of ROIMPEL are its modularity, the fact that it was
developed specifically for GIS-based regional and sub-regional land-use evaluation projects
(unlike most detailed crop models) and that initial detailed screening of soil/climate
conditions for land suitability for a given crop is performed. The daily dynamics of
development stages and of water-, temperature-, and nitrogen stresses are the main crop
processes simulated in ROIMPEL which determine the land suitable for a given crop. The
accumulation of biomass is based on radiation use efficiency and net photosynthetically
active radiation, which is sensitive to CO, concentration. The radiation-potential daily
biomass increase is corrected according to the temperature, water and nitrogen stresses.
Additional penalties on crop yields are included through alarm criteria (for example, for
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unfavorable weather parameters during the most sensitive development stages) based on crop
specific physiology.

Meta-models have been developed for the following crops:

e Winter wheat and spring wheat;
e Winter barley and spring barley;
e Winter oil seed rape;

Potatoes;

Grain maize;

Sunflower;

Soybean;

Cotton;

Grass; and

Olives.

Sets of soil and climate predictors for the meta-models were selected based on available
databases to emulate the full crop model results. The soil data were characterised by:

e The available water content in the rooting depth (1 parameter);

e The proportion of this water available between five suction levels between Wilting
Point and Field Capacity (4 parameters);

e Surface soil texture index, estimated using the formula Int[(4c+2z+d-78)/22.2] where
C, Z, and d are the percentage clay, silt and sand respectively and Int[x] is the integer
part of x. The index increases as the soil becomes heavier — more clayey than sandy (1
parameter); and

e Rooting depth, surface horizon hydraulic conductivity and wilting point soil moisture
water content (3 parameters).

The climate data used by the full crop model consists of daily air temperature (maximum and
minimum), precipitation, potential evapotranspiration and solar radiation. These daily data
are generated from monthly means and the climate data were therefore characterised by:

Mean annual potential evapotranspiration (PET);

Mean sum of PET from April to June;

Mean sum of PET from July to September;

Mean annual sum of precipitation;

Proportion of precipitation from April to June;

Proportion of precipitation from July to September;

Mean annual temperature;

Mean temperature from April to June;

Mean temperature from July to September;

Mean temperature from December to February;

Mean maximum temperature from June to August;

Mean minimum temperature from December to February;
Mean annual sum of global radiation;

Proportion of global radiation from April to June;
Proportion of global radiation from July to September; and
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e Ambient concentration of carbon dioxide in the centre of the particular time-slice.

The preparation of the crop meta-models was a two-step procedure. The first versions of the
crop meta-models were based on step-wise regression models. These produced outputs in the
expected range, allowing the identification of the best set of predictors, but lacked precision
and reliability. The second version which were integrated into the IAP are based on artificial
neural networks (ANN) combined with temperature thresholds to prevent crops growing in
unsuitable territories.

9.2 Calibration and validation of the crop meta-models

The crop meta-models were calibrated on a training set of data from the results of the original
ROIMPEL runs mostly carried out under the ACCELCEEC and ACCELERATES projects.
Calibration datasets were always sampled to adequately cover the whole range of both
predictors and the predicted variables, e.g. sowing date or actual yield. The sampling of the
calibration dataset took into account values outside + 1 standard deviation from the mean of
each parameter (both input and output). From the interval between 1 and 2 standard
deviations, two-thirds of the data were used for model calibration and of those data points
above/below 3 standard deviations 90% were used for model calibration. After calibration,
each meta-model was independently tested on a complementary validation set in order to
assess performance accuracy.

As the training and validation datasets include over 150,000 data points, a custom-made
software application for the development and training of the ANNs for the 60 meta-models
(12 crops x 5 output variables) was developed. The procedure for the meta-model
development is summarised in Figure 9.1. This application aids the effective selection of the
most suitable ANN design (e.g. input parameter selection, number of layers and hidden
Ia%/ers) and, based on 100 iterations of the best design, selects the top five ANNSs based on the
R, RMSE and MBE to prepare an ensemble of ANNs. As the run-time of the meta-models
increases considerably with the number of ANNSs in the ensemble, five was selected as an
acceptable balance between model performance and runtime. The outputs from each of these
five ANNs are then combined together in order to generate a final composite projection.
There is a large body of statistical theory and practical work showing the superiority of
ensembles over the use of any single model (Naftaly et al., 1997; Sharkey, 1999; Granitto et
al., 2005). When needed, the ANNs are combined with temperature thresholds that are
designed to “prevent” a given crop growing at sites which are not considered suitable (but in
which the limiting factors are not covered by the input parameters, e.g. in the case of winter
wheat, the mean annual temperature must be over 4.3°C and mean temperature from April to
June above 8.25°C. Using these criteria, the number of locations at which the meta-models
wrongly predicted possible cropping decreased by 60-75%. In order to increase the stability
and robustness of the predictions of individual yield levels (i.e. mean water- and nutrient-
limited yield (Yield_Av), mean water-limited yield (Yield POT) and mean water- and
nutrient-unlimited yield (YieldPOTI)) and in particular to preserve rules that govern the
relationship between the yield categories (i.e. Yield_POTI>Yield_POT>Yield_Av) in each
grid cell, additional meta-models estimating the differences between YieldPOTI-YieldPOT
and YieldPOT-Yield_Av were developed as well as the individual Yield _POTI, Yield POT
and Yield_Av meta-models. The final estimates of the individual yield levels are based on the
integrated results of all 5 meta-models in order to preserve the relationship between
individual yield levels within each grid cell.
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The results of the 60 meta-models (for mean water- and nutrient-limited yield, mean water-
limited yield, mean water- and nutrient-unlimited yield, sowing date and harvesting date for
each of 12 crops) are summarised in the Table 9.1. The meta-models show excellent
performance in predicting sowing and harvest dates, with usually more than 90% of the
variability explained. The meta-models were less successful in reproducing crop yields
(nutrient- and water-limited, water-limited and unlimited) but in all cases the results are
considered acceptable. Overall the RMSE for the yield estimates is in most cases below 0.5
t/ha and the MBE that is close to 0 indicating that there is low/no systematic bias.

Selection of input variables (Climate, Soil, CO, concentrat

10-40 ANN designs

50 iterrations
Validation of the results

(independent dataset)

The best design determined

100 ANN random
initializations . 100 iterations

Validation of the results
(independent dataset)

5 best ANNs selected
1000-10000 iterations

Additional temperature
conditions

Figure 9.1: Overview of the ANN development for the crop meta-models.

9.3 Crop meta-model illustrative results

Figures 9.2 to 9.6 show complete results of the meta-models for winter wheat in comparison
to the outputs of ROIMPEL. Figure 9.7 shows results from each of the best five ANNs and
the ANN ensemble mean in comparison to the outputs of ROIMPEL. Given the complexity
and variability of conditions across Europe, it was not possible to achieve the level of
accuracy reported by Audsley et al. (2008) for the much smaller area of eastern England.
However, the validation statistics shown in Table 9.1 are acceptable and it is likely that the
uncertainty arising from using ANNs instead of ROIMPEL will be smaller than that reported,
as the final IAP will use a clustering approach such that aggregation will likely lead to higher
accuracy of the meta-models. The complete overview of validation maps for all yield levels
and crops is available at
http://www.climsave.eu/internal/Data/Yield_Metamodel/Validation_maps_baseline/
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Table 9.1: Meta-model validation performance statistics for the 1980-1990 period of the ensemble mean of the five best performing
artificial neural networks (ANN) for mean water- and nutrient-limited yield (Yield_Av), mean water-limited yield (Yield POT) and
mean water- and nutrient-unlimited yield (YieldPOT]I), sowing date (Sowing) and harvest date (Harvesting).

Meta- Winter
model Winter Spring Winter Spring  oil seed Grain
Metric output wheat wheat barley barley rape  Potatoes maize Sunflower Cotton  Soybean Grass Olives
R® Yield_Av 0.81 0.74 0.82 0.75 0.86 0.93 0.86 0.85 0.86 0.86 0.81 0.99
YieldPOT 0.78 0.72 0.75 0.76 0.84 0.9 0.82 0.81 0.91 0.88 0.8 0.99
YieldPOTI 0.88 0.83 0.87 0.86 0.95 0.96 0.94 0.97 0.91 0.98 0.98 0.99
Sowing 0.99 0.98 0.99 0.98 1 0.99 0.95 0.99 1 0.96 0.75 0.99
Harvesting 0.99 0.99 0.98 0.99 0.99 0.99 0.72 0.97 0.82 0.9 0.83 1
RMSE  vield_Av 0.55 0.53 05 0.48 0.45 1.7 0.55 0.12 0.22 0.43 0.43 0.05
YieldPOT 1.02 1.02 1.01 1.06 0.82 3.01 1.06 0.37 0.42 0.5 1.59 0.05
YieldPOTI 0.88 0.93 0.86 0.94 0.74 3.53 0.85 0.19 0.89 0.32 1.25 0.05
Sowing 1.94 3.7 211 3.68 0.86 2.82 2.38 1.32 2.7 1.69 8.11 2.55
Harvesting 2.07 1.86 2.13 2.13 3.56 3.53 8.22 4.96 11.61 3.18 8.21 1.54
MBE  vield_Av 0 0 0 0 0 0.02 0.01 0 0 -0.01 0.01 0
YieldPOT -0.01 0 -0.01 -0.01 -0.01 0.03 0.01 0 0 -0.01 0 0
YieldPOTI -0.01 0.01 0 0 0 0.04 0.03 0 0.02 0 -0.02 0
Sowing 0.01 -0.09 0 0 0 0.12 -0.01 0.02 0.01 0.02 -0.04 0.01
Harvesting -0.02 0.12 -0.01 0 -0.12 0.02 0.24 -0.07 0.03 -0.02 0 -0.01
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Figure 9.2: Comparison of sowing date (Julian Day — 1st Jan = Day 1) for winter wheat
as predicted by (left) the mean of the meta-model ANN ensemble and (right)
ROIMPEL.

Legend: ®m -99 = 171-180 m 191-200 = 206-210 = 221-230 m 241- 250
da M <170 m 181-190 m 201 - 205 211-220 m 231-240 m > 250

Figure 9.3: Comparison of harvest date for winter wheat as pl;edicted by (left) the mean
of the meta-model ANN ensemble and (right) ROIMPEL.
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Figure 9.4: Comparison of potential (water- and nutrient-unlimited) yield for winter
wheat as predicted by (left) the mean of the meta-model ANN ensemble and (right)
ROIMPEL.

Legend: m -99.0 m 2.1- .1 -4, .1-6. 71-8.0 mw 9.1-10.0 m 10.6-11.0
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Figure 9.5: Comparison of yields limited by nutrient availability for winter wheat as
predicted by (left) the mean of the meta-model ANN ensemble and (right) ROIMPEL.
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Figure 9.6: Comparison of water- and nutrient-limited yield for winter wheat as
predicted by (left) the mean of the meta-model ANN ensemble and (right) ROIMPEL.

9.4 Integrating the crop meta-models with the other sectoral meta-models

In the 1AP design the crop meta-model outputs are not used directly but only in association
with the agricultural land use or farm model (SFARMOD; Section 10). Only after evaluation
of the farm model gross margins which, given the crop yields, can be calculated from the
crop prices, subsidies and variable costs, is it possible to estimate crop production in a
particular area. Interaction between individual sectors and the crop meta-models is therefore
provided by the SFARMOD meta-model and discussed in Section 10.

The statistical analysis, that is summarised in Table 9.1, was in reality much more detailed
and included careful assessment of numerous indicators of meta-model performance, both for
the training as well as validation subsets of data. It included testing of the meta-models across
the multiple climate change scenarios and comparisons with the original model. Given the
large number of meta-models, only an overview is available within this Deliverable with
complete data for all crops, individual ANN runs and variables available at
http://www.climsave.eu/internal/Data/Yield_Metamodel/Statistics/.
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Figure 9.7: Comparison of winter wheat yields limited by the nutrient- and water-
availability as predicted by ROIMPEL and by the five best ANNs and their mean used
in the final meta-model.
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In order to assess in detail the sensitivity of all three yield levels to changes in all input
parameters, a thorough sensitivity analysis was carried out on the response of the original
model (ROIMPEL) and the meta-models  which IS available at
http://www.climsave.eu/internal/Data/Yield_Metamodel/Sensitivity Charts/.  Figure 9.8
shows examples of the sensitivity response of winter wheat to changes in carbon dioxide
concentrations (Figure 9.8 left) and to mean temperature during the period from April to June
(Figure 9.8. right).

Figure 9.8: Response of the original winter wheat yield model (upper figures) and the
meta-model (bottom figures) to changing gradient of CO, and mean temperature from
April to June for all three yield levels (Yield_Av — Red, Yield_ POT - Green and
Yield POTI - Blue).

The sensitivity analysis revealed that the responses of the meta-models to variation in input
parameters (used as input variables to the meta-models) are very similar to the original model
for all crops and yield levels. This might be viewed as a considerable success given the
complexity of the meta-models and sheer number of input parameters.
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10. Development and validation of the SFARMOD rural land use allocation
meta-model

Daniel Sandars and Eric Audsley
Environmental Science and Technology Department, Cranfield University, UK

10.1 Introduction

SFARMOD is the generic name given within CLIMSAVE to the routine for selecting rural
(non-urban) land use. The concept is that the profitability of the competing uses for land is
estimated using a general linear programming model and it is assumed that in the long-term
the use that is most profitable will be the one selected. This procedure was used in Audsley
et al. (2006). There are basically three land uses: agriculture, forestry or unused. If profit is
above a threshold it will be used for intensive agriculture, which can be either arable or
grassland (dairy) cropping. Above a second threshold land is extensive grassland, which is
considered as grazing sheep or beef. Below this land is described as abandoned, which could
also be forest but could equally be simply unusable for agriculture such as bare rock.

The full model used to develop the SFARMOD meta-model within CLIMSAVE is the
SFARMOD optimising linear programme (hereafter referred to as the SFARMOD-LP) of
whole farm planning, based on profit maximisation subject to the constraints of soil,
precipitation and sound agronomic practice. This calculates the profitability of arable and
intensive grass cropping on the land. Further details of the SFARMOD-LP can be found in
Audsley (1981), Holman et al. (2005) and Annetts & Audsley (2002).

10.2 Description of the SFARMOD-LP - Silsoe Whole Farm Model

SFARMOD-LP (also known as the Silsoe Whole Farm Model) is a mechanistic farm-based
optimising linear programming model of long-term strategic agricultural land use. Crops are
defined by their gross margin, the amount and timing of the labour and machinery they
require, restrictions on crop rotations, and their sowing and harvest dates. Gross margins are
determined from the yield, which is a function of soil and climate, plus in some cases the
amount of irrigation. Soil workability which determines labour and machinery availability is
a function of soil and climate. In addition farmers have uncertain future knowledge of actual
prices and yields, and this is simulated in the full model by ten combinations of yields and
prices from which the average cropping represents the expected land use. The decision
variables are crop areas, crop rotations, amount of labour and machinery, and operational
timing within its feasible period which determine the farm profit given this soil and climate.

The inputs to the full SFARMOD-LP model are:

e Soil type, as an index reflecting the trafficability and available water capacity ranging
from 2.5 on heavy land to 0.5 on sand, by soil polygon covering Europe.
e >30 year mean annual precipitation and evapotranspiration.
e Gross margins determined by:
o Prices and support regime rules.
o Yields
o Input costs.
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e Harvest and sowing date - also if it is feasible to grow the crop in terms of it being
able to reach maturity. The model decides whether it is economic to grow the crop.

The outputs produced are:

Net profit, at the farm level.

Cropping as percentage of area.

Environmental burdens: nitrate leaching, pesticide use, nitrogen use.

Measures for biodiversity indicators required by the SPECIES model in Section 13,
such as over-winter stubble and use of pesticides.

Yields under soil and climate conditions are given by the yield model described in section 9.
This provides:

Yield under normal fertiliser input and no irrigation.
Yield with no nutrient limitation and no irrigation
Yield with no nutrient or water limitation.

Sowing and harvest dates.

Tests of the differences between these yields and yields reported by Eurostat resulted in
SFARMOD-LP using a calibration procedure to adjust the nutrient-unlimited yields to allow
for reduced inputs in CEEC countries, to allow for the effect of disease pressure on yields in
high rainfall situations and to update the yields to modern levels. These are applied at a
NUTS2 scale.

The SFARMOD-LP model simulates the impact of, and adaptation to, climate and socio-
economic change by modifying input parameters. Because changes to yields and suitability
can lead to large increases in the area of some crops, it is necessary to modify prices in
response to the need to meet demand for a commodity. For example, if climate change meant
that northern Europe could profitably grow sunflowers, there would be oversupply unless the
price was lower. Thus, the model reduces prices until demand is matched.

10.3 Development of the SFARMOD meta-model

The objective of the SFARMOD meta-model is to simulate the behaviour of the full
SFARMOD-LP model described above, as applied to all soil-climate combinations. The
procedure must allocate land to categories of land use and calculate the total expected
production of each type of crop outputs for each scenario. It must be able to respond to
scenario and adaptation options. The following options have been defined:

Increase in crop yields due to technology.

Reduction in labour and machinery due to technology.
Reduction in irrigation needed due to technology.
Increase in arable land set-aside for the environment.
Increase in arable land used to produce bio-energy.
Reduction in use of nitrogen for diffuse pollution.
Reduction in the consumption of ruminant meat.
Reduction in the consumption of non-ruminant meat.
Change in imports of agricultural products.
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Increase in cost of inputs due to oil price.
Increase in cost of labour due to wealth (GDP).
Increase in demand due to population growth.
Reduction in water available for irrigation.

10.3.1 Data available

CLIMSAVE operates on 10’ x 10’ grids and all data input and output are provided on this
common framework for all models. There are the 23,871 grid squares defined.

1.

2.

The soil data file is derived from an inter-section of the European soil map with the
CLIMSAVE 10’ grid. There are 143,955 soil type-grid combinations, with up to 47
different soil types (officially known as Soil Typological Units) within each grid square,
and a total of 5,107 different soil types. This needed to be simplified to facilitate
efficient application of the meta-model:

a.

The soil attribute database for each soil type was reduced to those parameters
required by the meta-models for crop vyield, forestry and SFARMOD such as
Available Water Capacity (AWC) at four suctions from Saturation to Permanent
Wilting Point, stoniness, and soil texture. On this basis many soil types are identical
and the total is reduced to 582 distinct soils.

A proportion of each grid can be identified as urban or not possible for agro-forestry
using the CORINE database (e.g. the land use category Bare Rock). These
categories were used as far as possible to eliminate the zero soil or very shallow soil
types. Even so there was a small proportion of land with no soil data which was not
identified as such by CORINE.

A clustering procedure was applied to the soil data (Figure 10.1) to produce 182
similar soil types, with the procedure aiming to not cluster soil types of over
5,000,000 ha unless they are very similar. This used the Akaike Information Criteria
(AIC) optimum for loss of information. However, note that it is actually possible to
cluster more or less tightly depending on run time.

b
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Figure 10.1: Distribution of the number of soils per soil cluster.

A similar clustering procedure was also applied to the baseline climate data for the
23,871 grid squares, assumed uniform over a grid, which produced 170 clusters (Figure
10.2). The clustering was based on grouping grid cells with similar average summer and
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average winter temperature, potential evapotranspiration and precipitation, and days
(from 1% January) until average temperature > 0°C and 6°C. As with soils it is possible
to use more or less clusters than the AIC optimum.

5

ceslER.

Figure 10.2: Example of UK and Italy meteorological clusters.

It is assumed that the climate change data has the same clustering. Analysis of the
clusters showed that there was very little difference if the change was applied to all grids
within a cluster. Cluster climate files were thus produced for each grid climate file.

3. Each grid is allocated a water basin by the WGMM meta-model.
4. Each grid is allocated a climate type (e.g. Maritime) by the forestry meta-model.

5. Combining climate and soil clusters and allowing for water basins, forest climate regions
and the fact that calibration factors between EEC and CEEC countries can be very
different, there are 16,058 distinct climate-soil clusters, a factor of 10 reduction, since
not all soils occur in all climate regions. Due to the diversity of soil types within a single
grid square, there are multiple climate-soil clusters within a grid square (but all having
the same climate). The crop yield meta-models (Section 9) and forestry meta-model
(Section 6) produce data on the same soil-climate clustering (not per grid).

10.3.2 Construction of the SFARMOD meta-model

The approach taken to develop the meta-model is to use the full SFARMOD-LP to
systematically populate the input parameter space and then to create a meta-model that relates
the input parameters to the SFARMOD-LP outputs. In order to fully cover the parameter
input space, SFARMOD-LP was run with 20,000 randomly selected sets of input data:

e Gross margins for each crop.
e Net precipitation used in the SFARMOD-LP workability formula.
e Summer temperature which modifies the harvest and sowing dates for each crop.

These results were then used to create the meta-model. A number of approaches were taken
for the meta-modelling, but the most reliably successful proved to be a regression rather than
a neural network approach. The regression is broken into steps to allow the effect of scenario
variables to be included. The steps estimate first the percentage of the area of each crop, then
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the costs of dairy cows (concentrates) then the fixed costs of labour and machinery. The
profitability of this soil and climate is the difference.

The procedure derives a regression model for each crop using various combinations of input
parameters. The input parameters to the regressions were:

The gross margin of the target crop (in €1000), or DM vyield for forage crops.

The effective precipitation measure used by the LP to calculate workability.

The distance of the sowing date from the start of the year (fortnights).

The distance of the harvest date from May 1st.

The soil type on a scale of 1 (sand) to 9 (heavy clay).

If the latitude is greater than 4 degrees = 1 else 0.

A measure of summer temperature on a scale of 0 to 1.

The ratio of the gross margin of other crops to the target crop omitting spring versions
of wheat, barley and rape which are very strongly correlated to their winter version.
9. The ratio of the target crop to winter barley and of winter wheat to winter barley.
10. Other crop specific parameters, e.g. sugarbeet to oilseed rape gross margin ratio.

ONoGa~WONE

With squares and inverses of the above variables, there are 23 or 24 input values for each
crop regression. Examples of the errors from three fits are shown for percentage crop areas
for wheat, sugar beet and potatoes in Figure 10.3. Where points are a very bad fit, these were
examined and found to be cases where extreme gross margins existed. The total percentage
of crops is then scaled to be 100%.

Given the crop areas, number of dairy cows and their gross margins, the net income of the
farm is known. The capital and labour costs are higher where the land is heavier and
precipitation is high due to fewer workable hours, which is exacerbated where the crop is
winter sown or harvested later in the year. The fixed cost regressions are shown in Table 3.
The profit is then the net income minus the dairy cow cost and fixed costs.

Where the profit is above a threshold (set at €350/ha) this soil/climate is deemed to be used
for intensive agriculture (either arable or dairy farming). Otherwise the land can be used
extensively (for livestock grazing) and the profit is then re-calculated without the arable
crops. This profit is then compared with the profit from managed forests (Section 6). If the
resulting profit is greater than a second threshold (set at €120/ha) then this soil/climate is
used for forest or extensive grazing. Otherwise the land is not used and if the Net Primary
Productivity of unmanaged forests (section 6) is positive the land is deemed to be forest,
otherwise the land is abandoned and un-forested. Other output parameters are determined
from the cropping, in particular irrigation requirement by basin.

Thus, we have a rapid approximation to the linear programming model. Given a new socio-
economic and climate scenario this speed enables crop prices to be iteratively adjusted to
meet a demand as well as the cost of water per basin to meet irrigation availability. The yield
of irrigated crops is calculated as the optimum level of irrigation given the yield with and
without irrigation and the crop and water price. Limited water increases the water price,
reduces the gross margin and, hence, the water used by the crop. Note that given fixed
demand it is likely to increase the area of the crop in total. Furthermore, if demand is very
high (e.g. due to a large population increase) and large restrictions (e.g. a large percentage of
set-aside and no imports), it is possible that no prices can be found which meet demand.
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Figure 10.3: Comparison of the performance of the SFARMOD meta-model with the
results for the full SFARMOD-LP for the percentage of the cluster allocated to (top)
wheat, (middle) sugar beet and (bottom) potatoes.

10.3.3 Validation of the SFARMOD meta-model

The fit of the SFARMOD meta-model to the LP model is illustrated by the results in Figure
10.4. The fit of the meta-model to the Eurostat data is shown in Figure 10.5 for arable and
Figure 10.6 for intensive grassland. The problem with grassland is that extensive and
intensive are both grassland so the Eurostat estimate was based on the difference between
agricultural area and arable area, which is some cases is negative.
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Figure 10.4: Mis-classification of land by the SFARMOD meta-model versus the full

SFARMOD-LP model.
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Figure 10.6: Fit of SFARMOD meta-model grassland classification to Eurostat data (%
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10.4 Application of the SFARMOD meta-model within the IAP and integration with

the other sectoral meta-models

There are a series of steps to the running of the SFARMOD meta-model:

1.

2.

14.
15.

The potential agricultural area of the grid cells is reduced pro-rata by the proportion of
the increase in urbanisation in the grid given by the RUG meta-model (Section 5).
Land which is flooded (input from the CFFlood meta-model; Section 7) has two
categories: land which is flooded frequently and unusable for agriculture and which is
removed pro-rata from each grid cell, and land which is flooded infrequently and is only
suitable for grassland.
For each soil-climate cluster:
a. Calculate crop yields and suitability from the Yield meta-model (section 9).
b. Calculate the gross margin of each crop from yields and scenario inputs including
irrigation; G = (P*Y*F) — (C*M) — (I*E*W)
where
P is the price of the commodity, e.g. cereal; Y is the yield; F is the NUTS2 scaling
factor;
C is the input costs of the crop which varies with yield (low vyields require low
nitrogen input); M is the scenario factor for input costs (e.g. fossil fuel prices give
higher fertilizer prices) (crop invariant); | is the amount of irrigation required by the
crop (determined as the optimum); E is the scenario factor for efficiency of irrigation
(crop invariant); and
W is the price of irrigation water for the basin.
Apply the meta-model to calculate the percentage under each crop.
Apply the meta-model to calculate the profit of the cluster.
Compare the profit to the intensive threshold €350/ha to define land use and crop
allocation.
If not intensive: Apply the meta-model to determine profit under grass.
Apply the forest meta-model (section 6) to determine profit under managed forest.
Compare the best of these profits to the extensive threshold €120/ha to define land use.
If not extensive: apply the forest meta-model (section 6) to determine NPP under
unmanaged forest.

. If NPP is positive then define land use as forest, else land use is abandoned.

Apply clusters to grids. A grid can have intensive, extensive, managed and unmanaged
forest and abandoned (as well as urban).

The percentage of a grid cell which is classified as a Protected Areas is defined by the
SPECIES model (Section 13) for each land use type. Where these proportions are not
satisfied (plus the forced flooded grassland), land is moved down from the next available
higher land use (e.g. intensive is forced to be forest). The land with the worst soils
(defined by Available Water Capacity) is assumed to be the protected area.

Calculate total production of commodities, and total irrigation.

Compare the supply of commodities (cereal, carbohydrate, oil, soya, cotton, milk and
meat) with demand, and compare the irrigation required by the basin with water
availability provided by the WGMM meta-model (Section 4). lterate prices to meet
demand and irrigation to meet water supply.
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10.4 Application of the SFARMOD meta-model

Figures 10.7-10.10 show example spatial output from the SFARMOD meta-model. Figure
10.7 shows the intensive agriculture and arable land in Europe for the baseline conditions.
Figure 10.8 shows the impact of a climate and socio-economic scenario for the 2050s on
these. There has been a visible shift of intensive and arable cropping to the north. Figure
10.9 shows the effect of using a different climate model (GFCM21 and HADGEM instead of
CSMKA3). Finally, Figure 10.10 shows the baseline for Scotland and the MacTopia socio-
economic scenario for the 2050s for intensive agriculture (the majority of Scotland is
extensive, i.e. beef and sheep grazing). The large reduction is due to the reduced demand and

large increase in productivity.
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Figure 10.7: Intensive agriculture and arable land in Europe for the baseline conditions.
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Figure 10.8: Intensive agriculture and arable land in Europe for the 2050s under Al
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emissions, climate sensitivity and socio-economic scenario as Figure 10.8).
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Figure 10.10: Intensive agriculture (the majority of Scotland is extensive, i.e. beef and
sheep grazing) in Scotland for the (left) baseline and (right) 2050s under the MacTopia
socio-economic scenario combined with a medium climate and low emissions scenario.
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Development and validation of the pest meta-models

Miroslav Trnka
Institute of Agrosystems and Bioclimatology, Mendel University, Brno, Czech Republic

11.1 Pest occurrence model description

The pest meta-models were designed based on the outputs of the climate-matching software
program CLIMEX that estimates the geographical distribution of a species based on the
climate conditions of a given location. CLIMEX is based on the assumption that the climate
suitability for a given species can be derived from knowing its present area of occurrence. In
other words, CLIMEX attempts to mimic the mechanisms that limit species’ geographical
distributions and determine their seasonal phenology. CLIMEX is a climate-rather than
weather-driven modelling program that is designed to provide insights into species’
requirements for climate, as expressed by their geographical distribution, seasonal phenology
and relative abundance. This approach suits the aim of showing climate induced and robust
shifts in pest species’ distributions under future climate(s). CLIMEX is based on the premise
that it is possible to define climates that are conducive to the generation of particular weather
patterns, which directly affect populations on a short time-scale (Sutherst et al., 2000). The
software has been used extensively in the fields of biological control, climate change and pest
risk assessment with positive results in many countries.

Knowing the climatological requirements of a given species allows assessment of the
suitability of a particular area for population growth and to determine the stress induced by
unsuitable climate conditions. These are expressed in terms of the ecoclimatic index (EI),
which describes the overall suitability of climate conditions for the establishment and long-
term presence of a pest population at a given location:

El = GIA x SI x SX,

where GIA is the annual growth index describing population growth under favourable
conditions, Sl is the annual stress index describing survival during unfavourable periods, and
SX represents stress interactions. The calculation of GIA and the stress indices are based on
the ranges of threshold parameters for species development adjusted by the user. Temperature
parameters include the lower and upper thresholds and optimal range of air temperature for
development, and similar parameters are used for soil moisture. In addition to temperature
and moisture limitations, CLIMEX also takes into account the process of diapause, which is
driven by temperature (initiation and termination temperature) and day-length thresholds. The
number of generations is calculated based on the number of degree-days above the lower
temperature threshold per generation.

Generally El ranges from 0 to 100, where EI = 0 indicates climate conditions unfavourable
for long-term species occurrence and EI > 30 represents very suitable climate conditions for
species occurrence (Sutherst & Myawald, 1985; Sutherst et al., 2001). Hoddle (2003)
considers locations with EI > 25 as very favourable for species occurrence, 10 < EI < 25 as
favourable and EI < 10 as limiting for species survival and occurrence. CLIMEX models use
monthly input data of minimum and maximum temperature, relative humidity at 9 am and 3
pm and precipitation. In the CLIMSAVE project mean daily relative humidity is used to
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approximate required inputs as sensitivity analysis showed a negligible effect on the model
outputs when observed or estimated relative humidity values are used to calculate EI.

11.2 Pest occurrence model validation

In the first stage of assessing meta-model performance, the results from CLIMEX were
compared with reports in the CAB International database and Fauna Europea. Figure 11.1
shows the evaluation of the presence/absence of seven species according to these databases.
The figure shows the number of countries in which the results from CLIMEX and the
observed databases agree (both present — light green; both absent — dark green) or disagree
(orange and red). However, these data are only provided at the national level and hence have
limited value for direct model validation and cannot be used to derive validation statistics,
such as Kappa.
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Figure 11.1: Number of European countries with presence or absence of seven pests
according to CLIMEX vs. records available in databases of the observed pests’
occurrences (CABI and Fauna Europea): light green — CLIMEX and databases agree on
presence; dark green - CLIMEX and database agree on absence; red and orange -
CLIMEX and databases disagree on presence and absence.

The performance of CLIMEX was therefore compared against a range of available data
originating from published studies and the results are summarised in the following sections.

11.2.1 Ostrinia nubilalis

The European corn borer (O. nubilalis) is the most important native pest of grain maize and is
widespread in Europe. Under current climate conditions, O. nubilalis has between one and
three generations per year, depending on latitude and temperature conditions. In northern
areas it has one or a partial generation. In central Europe, it has one generation in north-
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western Hungary and two in the southern part of the country (Keszthelyi & Lengyel, 2002).
In warmer areas the pest can complete two or three generations (southwest France and Italy).

To provide increased confidence in CLIMEX, the performance of CLIMEX was compared
with that of the process-based ECAMON model (Trnka et al., 2007) using the reported
distribution of the European corn borer (ECB) in the Czech Republic. The database,
consisting of almost 900 reports of O. nubilalis occurrence from more than 200 sites spanning
the entire Czech Republic, was derived through personal contacts with individual research
stations and from farmers for the period 1961 to 2003. Figure 11.2 shows that both CLIMEX
and ECAMON show very good agreement with observations during two different model
periods (1961-1990 and 1991-2000). Both models also properly recorded the pest expansion
based on the higher temperatures of the last decade of the 20™ century, which seems to
support the hypothesis that this expansion was at least partly climate driven. The slight
superiority of ECAMON over CLIMEX is due to the very detailed developmental module and
the use of a daily time step compared to the simpler climatology used in CLIMEX. However,
CLIMEX gives reliable results whilst having far lower input data requirements, and so
demonstrates its applicability for incorporation within the IAP.

Climate switability imdex Logend b) Qlimate suitability index

a)

Figure 11.2: Validation of European corn borer (Ostrinia nubilalis) occurrence in the
Czech Republic according to the detailed model ECAMON (a, b) and CLIMEX (c, d)
that has been used to develop the meta-models for the IAP. Figures a) and c) correspond
to the estimated range for the 1961-1990 climate, whilst b) and d) correspond to the
estimated range for the 1991-2000 climate.
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Validation of the CLIMEX model for O. nubilalis was carried out coupled with the model of
L. decemlineata in the domain of central Europe (Kocmankova et al., 2001), where the
predicted number of generations was in accordance with observed records. Across the whole
of Europe the model correctly simulated the higher number of generations in Italy and
France, and a single generation of O. nubilalis in northern countries such as Norway,
Sweden, Finland, Denmark, United Kingdom and Ireland (Figure 11.3), where it is long-
established.

Ostrinia nubilalis Leptinotarsa decemlineata
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Figure 11.3: CLIMEX simulation of the Ecoclimatic Index representing the climate
conditions favourable for the establishment of one (green), two (yellow), three (orange),
and four (red) generations of (left) O. nubilalis and (right) L. decemlineata. The yellow
line constitutes the northern range limit from CLIMEX. Red circles mark observed
occurrences of the pest available in the Global Biodiversity Information Facility
database (http://data.gbif.org/).

11.2.2 Leptinotarsa decemlineata

The Colorado potato beetle (L. decemlineata (Say)) is one of the most destructive potato
pests. The beetle is present throughout Europe except for Britain, Ireland and Scandinavia,
having its northern range limit in Russia (60°N) (EPPO, 2006). The number of Colorado
beetle generations is largely a function of temperature, varying between about four in the
hottest areas to one full and one partial generation near the colder extremes (Hiiesaar et al.,
2006).

The CLIMEX model for L. decemlineata has been validated in previous studies, with the
spatial distribution of the number of generations corresponding with observations across
central Europe (Kocmankova et al., 2001). Within the wider spatial extent of CLIMSAVE,
CLIMEX correctly indicates that the climate of southern and south-eastern England and the
southern border of Sweden as potentially suitable for the establishment of the L. decemlineata
(Figure 11.3). It is only pest management in these countries that has successfully avoided the
long-term survival of the pest to date.
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11.2.3 Cydia pomonella

Codling moth (Cydia pomonella) is the oldest known and the most widely distributed pest of
deciduous pome fruit (Ferro and Harwood, 1973). The native home of the codling moth is
considered to be south-eastern Europe from where it has spread to wherever the climate is
suitable for commercial production of apple and pear trees. The present distribution of codling
moth is related to climatic factors as well as to food conditions (Wearing et al., 2001), with
temperature considered to be the determining factor of the life-cycle length and consequently
of the number of completed generations.

Records regarding the number of generations of the moth across the European area were used
for validation. Codling moth develops one generation in the coldest regions, four or five
generations in the hottest regions, generally three generations are present in Spain (Gonzales,
2007), two generations in Romania (Neamtu et al., 2008), three generations in Italy
(Reggiany et al., 2006), and a maximum of two generations in the Czech Republic (SRS,
2007). The number of generations predicted by the CLIMEX simulation are in the agreement
with these records (Figure 11.4), and the simulated northern boundary of the pest occurrence
area  corresponds  with  the  Global Biodiversity Information Facility
(http://data.gbif.org/occurrences/).

Lobesia botrana

Cydia pomonella Legend: Ecoclimatix Index
h |

Legend: Ecoclimatix Index
h ]

Figure 11.4: CLIMEX results of the Ecoclimatic Index representing climate conditions
favourable for the establishment of one (green), two (yellow), three (orange) and four
(red) generations of (left) C. pomonella and (right) L. botrana. Red circles mark observed
occurrences of the pest available in the database of the Global Biodiversity Information
Facility (C. pomonella) and Fauna Europea/Suffolk Moth Group (L. botrana). The
yellow line constitutes the CLIMEX estimate of the potential northern range limit.

11.2.4 Lobesia botrana
The European grapevine moth (L. botrana) is a significant pest of berries and berry-like fruits

in Europe and the Mediterranean. L. botrana is native to southern Italy but is now distributed
in vineyards throughout Europe (CABI Distribution Maps of Plant Pests, www.cabi.org).
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The number of generations is determined by several factors including photoperiod,
temperature, humidity, latitude, food quality, and the effects of predators and diseases (Deseo
et al., 1981). In response to differences in climate, the number of generations completed by L.
botrana differs geographically. In general, more generations are completed in southern
latitudes than in northern latitudes - up to four generations can be completed in warmer
regions such as Greece (Moschos et al., 1998), whilst two or three generations are present in
Germany (Lous et al., 2002).

CLIMEX simulations have successfully estimated the climate conditions which are
favourable for completing the number of generations in the relevant European countries
mentioned above (Figure 11.4). The CLIMEX results for Poland are consistent with Fauna
Europea (www.faunaeur.org), which indicates the moth as surviving in this area. Although
CLIMEX indicates that Denmark and the southern coastal areas of Sweden and Finland as the
northern limit for L. botrana occurrence, in disagreement with both CABI and Fauna
Europea, CLIMEX correctly indicates the climate suitability in Gotland (where the moth
presence is recorded by Fauna Europea). L. botrana is a rare immigrant to Suffolk in the
United Kingdom (www.suffolkmoths.org.uk), which CLIMEX has assessed as suitable.

11.2.5 Oulema melanopus

The Cereal leaf beetle (O. melanopus) is an invasive pest of small grain cereal crops,
particularly of wheat, oats, and barley (CAB International, 2002). This species is how present
throughout Europe. O. melanopus typically has one generation per year, but occasionally two
years are necessary to complete the development of a single generation in more northern
climates (NCSU, 2003).

The climate suitability for the establishment of O. melanopus was, due to the obligate
univoltinism of the pest, evaluated at three levels: unsuitable, suitable and very suitable
climate. The model correctly predicts pest presence in northern areas such as in Norway,
Sweden, Finland and Denmark, and in the United Kingdom and Ireland where it is
widespread. The moisture requirements of the pest in southern countries like Greece and Italy
were also fulfilled (Figure 11.5).

11.2.6 Rhopalosiphum padi and Sitobion avenae

The Bird cherry-oat aphid (R. padi) and the English grain aphid (S. avenae) which are both
cereal pests, are important vectors of plant viruses that may cause considerable damage, the
most important among them being BYDV (Barley yellow dwarf virus). The distribution of
cereal aphids is generally affected by climatic conditions and some biotic factors such as the
quality of host plants, dispersal efficacy and natural enemies (Elliot and Kieckhefer, 2000).

The geographical distribution of both species is almost pan-European, including Scandinavia,
UK, Ireland and also southern locations such as Italy or Sicily. However, the CABI and
Fauna Europea databases do not provide more detailed specification of the pests’ occurrence.
The CLIMEX model matches the occurrence of infested areas such as in Norway where
CLIMEX estimated suitable climate conditions for both species on the south-eastern coast
only and for S. avenae on the southern coast of Finland (Figure 11.6). The verification of the
number of generations is also rather problematic due to the complicated and variable
reproduction cycle of aphids, but there are records in England where S. avenae can develop
eighteen generations, in agreement with CLIMEX.
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Oulema melanopus

Legend: Ecoclimatix Index
[

Figure 11.5: CLIMEX results of the Ecoclimatic Index representing Suitable (yellow)
and Very Suitable (green) climate conditions for the establishment of O. melanopus. Red
circles mark observed occurrences of the pest available in the Global Biodiversity
Information Facility (http://data.gbif.org/) database. Yellow line constitutes the potential
northern range as was estimated based on the CLIMEX results.

Rophalosiphum padi Sitobion avenae
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Figure 11.6: CLIMEX simulation of the Ecoclimatic Index representing climate
conditions favourable for the establishment of eight (green), twelve (yellow), and sixteen
(orange) generations of (left) R. padi and (right) S. avenae. Red circles mark observed
occurrences of the pest available in the Global Biodiversity Information Facility
database. Yellow line constitutes the potential northern range as estimated by CLIMEX.
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11.3 Development and validation of the pest meta-model

Overall the CLIMEX model reproduces well the regional, as well as the local,
presence/absence suitability for the seven pest species, and therefore has been used as the
basis for the development of the pest meta-models. Preliminary pest meta-models based on
step-wise regression models lacked precision and reliability, and so meta-models using
artificial neural networks (ANNs) were developed to reproduce the behaviour of the
CLIMEX model.

The procedure for developing the pest meta-models is summarised in Figure 11.7. In the first
stage, the best performing ANN design (e.g. input parameter selection, number of layers and
hidden layers) was determined by training the ANN on a calibration dataset and then
validating it on an independent validation subset. The best design was then initiated using
100 different random seeds and the top five ANNs were selected based on their R, RMSE
and MBE. The training and validation dataset included the whole CLIMSAVE 10" European
domain (1961-1990). For the five top ANNS, a higher number of iterations were used in
order to obtain the best final meta-model ensemble. The run-time of the meta-models
increases considerably with the number of ANNs in the ensemble and therefore it was
decided to keep the number low (five) whilst maintaining good model performance.

10-20 ANN designs

50 iterrations

Validation of the results
(independent dataset)

The best design determined

100 ANN random
initializations - 100 iterations

Validation of the results
(independent dataset)

5 best ANNs selected
1000-10000 iterrations

Figure 11.7: Overview of the development of the pest meta-models based on ANNSs.

The results of 13 meta-models are summarised in Table 11.1, showing the ensemble mean
performance and the range across the five constituent meta-models. It shows very good
performance for the meta-models for all pest species for both the Ecoclimatic Index and the
number of generations with at least 91% of the variability explained. Figure 11.8 also shows,
as examples, the excellent spatial comparison between the results of CLIMEX and that of the
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mean of the five constituent ANN meta-models for the Ecoclimatic Index for three species
for the period 1961-2000.

Table 11.1: Results of the meta-model validation for the period 1980-1990 for the
ensemble mean (range across the five best performing ANNSs in parentheses).

RMSE MBE

Ecoclimatic Number of Ecoclimatic Number of Ecoclimatic Number of
Pest species Index Generations Index Generations Index Generations
Cydia pomonella 0.99 0.99 1.77 0.09 0.03 -0.002

(0.98-0.98) (0.99-0.99) (1.81-1.89) (0.09-0.1) (-0.08- 0.05) (-0.005-0.001)
Leptinotarsa 0.98 0.99 1.67 0.06 -0.011 0.0004
decemlineata (0.98-0.98) (0.99-0.99) (1.67-1.68) (0.06-0.06) (-0.089-0.002) (-0.002-0.004)
Lobesia botrana 0.98 0.99 1.41 0.05 -0.012 0.004

(0.98-0.98) (0.99-0.99) (1.45-1.49)  (0.04-0.11) (-0.055-0.03) (-0.003-0.004)
Ostrinia 0.98 0.99 1.54 0.04 -0.012 0.0007
nubilalis (0.98-0.98) (0.99-0.99) (1.56-1.60)  (0.04-0.04) (-0.055-0.03) (-0.0005-0.002)
Oulema 0.99 - 1.54 - -0.03 -
melanopus (0.98-0.98) (1.64-1.72) (-0.06-0.001)
Rophalosiphum 0.95 0.99 2.47 0.317 -0.015 0.003
padi (0.94-0.94) (0.99-0.99) (2.58-2.71)  (0.367-0.49) (-0.05-0.11) (-0.028-0.03)
Sitobion avenae 0.92 0.99 2.74 0.34 0.092 0.001

(0.91-0.91) (0.99-0.99) (2.87-2.96) (0.45-0.47) (-0.047-0.24) (-0.04-0.05)

Cydia pomonella

Legend: Ecoclimatix Index

24 39 48

Ounfema melanopus

Legend: Ecoclimatix Index

-
20 33

Rophalosiphum padi

Legend: Ecoclimatix Index

S -
20 28 36

Figure 11.8: Comparison of the Ecoclimatic Index for three species (Cydia pomonella,
Oulema melanopus and Rophalosiphum padi) according to (a) CLIMEX and (b) the
mean of the five meta-models.
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11.4 Pest meta-model illustrative results

Figure 11.9 shows the results of the meta-models for Ostrinia nubilalis across the
CLIMSAVE 10" European domain, including the sensitivity of Ecoclimatic Index and the
number of generations to temperature changes across the range from -2°C to +6°C. This
shows, for example, the increasing northward shift in the number of generations with
increasing temperature.

Ostrinia nubilalis Ostrinia nubilalis
Legend: Ecoclimatic Index Legend: Number of Generations
L[] |
21 25 0
Temp #0 C . Temp #0 C
. .
' -
Temp e1L 3 Temp o1
’ .’
- o
Tarre 44 C Terre 44 C
£ -
. .
a) b)

Figure 11.9: lllustrative results for the value of (a) Ecoclimatic index (El) and (b)
number of generations per season for Ostrinia nubilalis during the period 1961-1990
with the meta-model being tested for sensitivity to temperature change from -2°C to
+6°C.

Figure 11.10 shows the expected number of generations for the Colorado potato beetle in the
2050s assuming CSMK3 climate model, Al emission scenario with medium climate
sensitivity. The results for the expected future climate conditions show:

1. A first generation in the Scandinavian region (Norway, Sweden, Finland) as far as 64°
and in UK to 57 °N latitude for the first time compared to baseline.

2. Second generations cover the coherent region 46-60°N (46-54°N in UK) and southern
areas surrounding the dryer regions or foothills of Spain, France, Italy, Romania and
Bulgaria.

3. Athird generation is present:

a) especially in France, in the western lowlands of Germany, almost the whole of
Poland, and the lowlands in Bohemia.

b) The next core area of a third generation is in the central European region in
southern Moravia, the lowlands of Austria, and the whole of Hungary
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extending to Slovenia and Romania. In western and central Hungary the third
generation progresses to the fourth generation. The minor regions with
presence of third generation are in the Black Sea coast (Moldova and
Bulgaria), isles of eastern Denmark, Italy, Sardinia, and the coastal and
western part of Spain.
c) Negligible niches providing climate suitable for the third generation are visible
in Greece, the southern coast of the UK and the eastern part of Sweden.
4. Four generations occur in the warmest areas — Portugal and western Spain, the east
coast and lowlands of France, the lowlands of lItaly, central Hungary, the south-
western border of Romania and the Black Sea coast.

Differences between the baseline and climate change scenario (Fig. 11.10) determine the
areas with increases/decreases in the number of generations across the European domain. An
increase of about one generation is recorded in areas which currently have one or two
generations. This growth is especially significant in areas north of 55°N where this represents
the pest’s new establishment (growth of about one generation) or the shift to second
generations in primary univoltine regions. A similar trend is obvious in higher altitudes of the
whole European domain. Decreases of about one or two generations are simulated in the
Pannonian lowland.
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12. Development and validation of the LPJ-GUESS biodiversity meta-model

Dorte Lehsten, Florian Sallaba and Martin T. Sykes
Department of Earth and Ecosystems Sciences, University of Lund, Sweden

12.1 LPJ-GUESS model description

LPJ-GUESS, a complex dynamic global vegetation model, is a process-orientated ecosystem
modelling framework (Smith et al., 2001). It simulates successional vegetation dynamics on
different scales (Schurgers et al., 2009, Wania et al., 2009) while modelling the atmosphere-
vegetation carbon and water fluxes, plant physiology, establishment, mortality, and
disturbance due to land use and fire (Sitch et al., 2003). The model input parameters are
climate variables on a daily or monthly basis, atmospheric CO, concentration on an annual
basis, soil parameters as static values, and plant specific traits to distinguish between species.
The vegetation is modelled on a so-called stand. Within a stand, input parameters are equal.
Establishment, growth, mortality, as well as disturbance events are simulated for a number of
replicate patches within a stand to reduce stochasticity.

12.2 LPJ-GUESS model calibration and validation

LPJ-GUESS has been applied successfully in studies of different ecosystems and their
responses to changing climatic drivers (Hickler et al., 2004, Schréter et al., 2005, Gritti et al.,
2006, Morales et al., 2007, Thomas et al., 2008). In these studies LPJ-GUESS was tested and
further developed through extensive calibration and validation work, although ecosystem
models tend to over-estimate low- to mid-range net primary production at boreal and
temperate sites (Cramer et al., 1999). Given this extensive previous validation of the
underlying model, the LPJ-GUESS meta-model was not further calibrated or validated.

12.3 Development of the LPJ-GUESS meta-model

The application of the LPJ-GUESS framework within the CLIMSAVE IAP is unfeasible
since a simulation at the European scale would take several hours and would not satisfy the
“just-in-time” demands of the CLIMSAVE modelling framework. The CLIMSAVE
framework demands a simulation of a few seconds. Therefore it was necessary to develop a
rapid meta-model of LPJ-GUESS, implemented in a DLL (dynamic link library), that
simulates ecosystem parameters in an acceptable accuracy/error range in comparison to the
entire LPJ-GUESS framework. The output ecosystem parameters produced by the meta-
model are net primary production (NPP), leaf area index (LAI) and aboveground carbon mass
(Cmass). Input drivers of the meta-model are temperature, winter and summer precipitation
and atmospheric CO, concentrations. The meta-model produces outcomes for the baseline,
each time slice and scenario, which the user can select on the 1AP.

The meta-model input drivers such as temperature, precipitation and atmospheric CO, are
selected by users directly on the 1AP. The input parameter sources, besides the baseline, are
from the IPCC emission scenarios (Al, B1, A2 and B2), time slices (2020s, 2050s) and
GCMs (HadGEM, GFCM21, IPCM4, CSMK3 and MPEH5). A fourth input parameter which
is provided by the SFARMOD land use model (Section 10) is the percentage of four land use
types in each grid cell (unmanaged forest, intensive agriculture, extensive agriculture and
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abandoned land). The LPJ meta-model is run within those grid cells containing some
unmanaged forest and/or abandoned land for 22 species (see Table 12.1) parameterised
according to Hickler et al. (2012). In abandoned land, it is assumed that the potential forest
vegetation has 35 years to develop. For intensive and extensive land use classes, only cool C3
grass (Species 21) and C4 grass (Species 22) are simulated. Unlimited irrigation is assumed
for intensive land use and, hence, there is no influence of precipitation on the species
growing.

Table 12.1: Description of modelled species based on Hickler et al. (2012).

Species no. Description (Latin Name)

1 Silver fir (Abies alba)

2 Cranberry (Vaccinium)

3 Silver Birch (Betula pendula)

4 White Birch (Betula pubescens)
5 Hornbeam (Carpinus betulus)

6 Hazel (Corylus avellana)

7 Beech (Fagus sylvatica)

8 Ash (Fraxinus excelsior)

9 Cade Juniper (Juniperus oxycedrus)
10 Rosemary (Rosmarinus)

11 Norway Spruce (Picea abies)

12 Scots Pine (Pinus sylvestris)

13 Aleppo Pine (Pinus halepensis)
14 Aspen (Populus tremula)

15 Kermes Oak (Quercus coccifera)
16 Holm Oak (Quercus ilex)

17 Downy Oak (Quercus pubescens)
18 English Oak (Quercus robur)

19 Lime (Tilia cordata)

20 Elm (Ulmus glabra)

21 Cool grass (C3 herbaceous)

22 Warm grass (C4 herbaceous)

The meta-model development is based on LPJ-GUESS simulations of 63 grid cells that are
situated along two cross European transects as shown in Figure 12.1. Thus, the meta-model
development captures several bio-geographical as well as different climatic zones in Europe.
The baseline input parameter time-series are taken from CRU TS 3.0 data covering a period
from 1900 to 2006 (University of East Anglia Climate Research Unit, 2008). Furthermore,
the baseline climate of the 63 grid cells was adjusted in 500 different combinations using the
same ranges as the sensitivity analysis (see Table 12.3). This led to 31,500 (63*500) LPJ-
GUESS simulations with NPP, LAl and Cmass outcomes. We calculated the average
temperature, average sum of yearly winter and summer precipitation of the last 20 years of
the climate time-series. The simulated ecosystem parameter values were also averaged over
the last 20 years of the respective climate time-series combination in order to smooth extreme
event peaks, e.g. flooding and heat-wave events.

Transfer functions were developed to describe the relationship between temperature, winter
and summer precipitation, and atmospheric CO, with the desired ecosystem outputs.
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Functions were fitted empirically for each species of each land-use type ecosystem parameter
and the respective climate driver. These functions of the different climatic drivers were
combined into a transfer function that describes the species ecosystem parameter value for
the respective climate conditions (Sallaba et al., in prep).
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Figure 12.1: Cross European transects capturing north to south-west and north-west to
south-east climatic transitions. The area of a cell is 1° and is based on the 10’
CLIMSAVE grids. The extent of a grid is ~60km - ~100km depending on its location —
since Lambertian equal area projection is not isogonic or isometric it leads to distortion
towards the edges.

Additionally, transfer functions were established for the total values of the ecosystem
parameters. A total ecosystem parameter represents the sum of all simulated species but is
based on a different transfer function (Sallaba et al., in prep). The total ecosystem parameters
are used to scale down the estimated individual species ecosystem parameters. Thus, the sum
of the individual species ecosystem parameter values will not exceed the value of the total.
This step was necessary since the individual species values exceed the total ecosystem
parameter values due to missing competition and other vegetation dynamics, which are
difficult to implement in an empirical model.

The information on the user choice is provided by the Running Module to the DLL. Within
the DLL the appropriate transfer functions are applied to calculate the ecosystem parameters
of each species and to provide the relevant indicators to the 1AP. Species are grouped into
plant functional types (PFT) (such as coniferous trees) and the DLL sends back only those
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species/PFTs that the user has requested. Timber is calculated according to a percentage of
biomass, cover ratio is calculated according to LAI, and productivity is given by the net
primary production. Scenic potential is a measure for landscape diversity, in this case
biodiversity. Scenic potential is calculated as the sum of the squared quotients of LAlspecies tO
LAlww. For each land use type the scenic potential is calculated and multiplied with the ratio
of this land use type. Finally, the Simpson’s diversity index (Simpson, 1949) is calculated,
using leaf area index as a measure for species abundance, as an aggregate indicator of climate
change impacts on biodiversity.

When the baseline climate is selected in the IAP, the user can change a number of sliders
related to annual temperature change, summer and winter precipitation change and CO,
concentration. The number of combinations of slider changes is too great to create look-up
tables for every combination. Hence, a sensitivity analysis (see Section 12.5) of LPJ-GUESS
has been undertaken to define relationships between the altered climatologies and the outputs
of LPJ-GUESS.

12.4 Calibration and validation of the LPJ-GUESS meta-model

The dataset was randomly divided into calibration (50%) and validation (50%) parts. The
analysis dataset (31*500) and the respective ecosystem parameter values of each species were
further examined for relationships. This resulted in the ecosystem parameters of each species
being described empirically using maximum functions of temperature, winter and summer
precipitation and atmospheric CO,. Each function was determined using an optimised fitting
and calibration approach; and then combined to describe each ecosystem parameter of each
species. The same methodology was applied to find empirical relationships for total NPP,
LAI and Cmass values for the respective climate of a grid cell.

The combined functions were tested on the validation dataset (32*500). We compared LPJ-
GUESS with the meta-model outcomes and applied R? as the measure of accuracy. Since
C4-grass (Species 22) did not occur in our LPJ-GUESS simulations, it could not be included
in the meta-model development due to missing data. The climate demands of warm C4-grass
were probably not met in the applied climate combinations. The accuracy assessment of
intensive and extensive is given in Table 12.1. The individual species validation for
unmanaged forest and abandoned land is shown in Figure 12.2.

Table 12.1: Validation of the intensive and extensive land-use ecosystem parameters.

R? values NPP LAI CMASS

Intensive (C3 grass) 0.33 0.47 0.46
Extensive (C3 grass) 0.75 0.79 0.80

Table 12.1 reveals a difference in accuracy between intensive (C3-grass) and extensive (C3-
grass) land-use. The lower R? values of intensive can be explained by the difficulties to
describe intensive land use using inputs of only temperature and atmospheric CO,. The
implementation of unlimited irrigation into the meta-model may be further developed using a
correction factor. However, the accuracy of extensive is good compared to the individual
species performances in the other land use types (i.e. compared with Figure 12.2) and
supports the chosen approach of transfer functions.
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Figure 12.2: Individual species validation of the ecosystem parameters of unmanaged
forest (top plot) and abandoned land (bottom plot) use types. The validation was done
by comparing the LPJ-GUESS and meta-model results for individual species using R?
as a measure of accuracy.

The validation for unmanaged forest land use shows that the majority of species have R?
values less than 0.5 for all the ecosystem parameters. The best performing (R? above 0.5)
species are betula pendula (Species 3), betula pubescens (Species 4), corylus avellana
(Species 6), populus tremula (Species 14) and C3-grasses. The lowest accuracies (R? below
0.2) are found in abies alba (NPP & Cmass - Species 1), pinus sylvestris (LAI - Species 12),
quercus ilex (LAl — Species 16) and quercus pubescens (Species 17).

Abandoned land-use species, as these represent an early stage of the unmanaged forest
development, follow the trend for forest. The modelled species NPP values have higher
accuracies than in forest. The NPP of populus tremula (Species 14) has a good R? of 0.7 but
Cmass is lower for abandoned land. Cmass species values have somewhat lower R? values in
comparison to forest. In particular, abies alba (Cmass - Species 1) is different with an R?
value of approximately 0.1.

The general performance of the meta-model is acceptable since important vegetation

dynamics (i.e. competition, mortality and disturbance) cannot be implemented into the
empirically-based meta-model.
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12,5 Sensitivity analysis of the LPJ-GUESS meta-model

The sensitivity analysis of LPJ-GUESS has been undertaken for the 63 grid cells situated
along two transects that cover several bio-geographical zones as shown in Figure 12.1. The
sensitivity of vegetation to climate parameters (annual temperature, winter and summer
precipitation) and atmospheric CO, concentration was analysed in order to estimate their
influence on net primary production, biomass accumulation and leaf area index across the
Arctic, Boreal, Continental, Atlantic, Alpine, Mediterranean and Pannonian climatic and bio-
geographical zones.

The LPJ-GUESS simulations were performed using CRU data from 1900 — 2006 (University
of East Anglia Climate Research Unit, 2008) as the baseline climate. The sensitivity analysis
is divided into two parts: (i) independent changes; and (ii) combined changes in climatic
drivers.

12.5.1 Independent changes in climatic drivers

This part of the sensitivity analysis involves the adjustment of one climatic driver in a LPJ-
GUESS simulation. Table 12.2 shows the agreed minimum and maximum values for each
climatic driver and atmospheric CO, concentration which were adjusted during the
independent sensitivity analyses by the stated increments. The climatic driver values were
added to the CRU data (Mitchell and Jones, 2005) in each of the 43 simulations.

Table 12.2: Minimum and maximum values of each climatic drivers and their
individual increments.

Climatic Driver Temperature Winter Summer Atmospheric
[°C] Precipitation [%6] Precipitation [%] CO,, [ppm]
Min. Value 0 50 50 350
Max. Value 6 150 150 700
Increment Value 0.5 10 10 50
Sum of Steps 13 11 11 8

12.5.2 Combined changes in climatic drivers

The second part of the analysis is based on combined changes in multiple climatic drivers
which influence vegetation dynamics in different dimensions. The climatic driver
adjustments are constrained to the climatic driver values as stated in Table 12.3. The
constrained climatic driver values were added to the CRU data (Mitchell and Jones, 2005)
and led to 500 different simulations.
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Table 12.3: Definition of the climatic drivers used within the multivariate sensitivity
analysis.

Temperature Winter Precipitation Summer Precipitation Atmospheric CO,
change [°C] [%0 of baseline] [%%0f baseline] [ppm]

0 50 50 350

2 75 75 437.5

4 100 100 525

6 125 125 612.5

- 150 150 700

4 5 5 5

12.5.3 Results of the sensitivity analysis

The independent changes in climatic drivers along the transects led to a wide range of
effects on NPP. Figure 12.3 visualises the range of NPP values (maximum minus minimum
NPP) for each grid cell along the transects. Considering the difference between the minimum
and maximum NPP values, the first transect (red line in Figure 12.3) has small NPP
variations in the Norwegian Alpine and Boreal bio-geographical zones (0.1 — 0.2 kgC*m).
Increasing NPP variations up to ~0.3 kgC*m™ occur from southern Sweden to southern
Germany in the Continental bio-geographical zone. In the Alpine zone the NPP variations are
less elevated at ~ 0.2 kgC*m™. High NPP variations (up to 0.4 kgC*m) are modelled in the
Mediterranean zone of France and northern Spain. In central Spain NPP variations are stable
on an elevated level and increase strongly (0.4 kgC*m™) towards the Atlantic coast.

The second transect (blue line in Figure 12.3) shows a slight increase in NPP variations from
Scotland (~0.2 kgC*m™) through England (~0.25 kgC*m™) and northern France (0.3 kgC*m"
%) in the Atlantic bio-geographical zone. In the Continental zone the variations are stable at
~0.3 kgC*m™ NPP towards the Alpine zone. The model results show a decline of ~0.2
kgC*m™ NPP variations in the Alpine zone. From the eastern Alpine to the Pannonian zone
NPP variations increase up to ~0.35 kgC*m™. In the Romanian Alpine (Carpathian
Mountains) zone the variations show a dip. Then the NPP variations increase to ~0.35
kgC*m™ in the Continental bio-geographical zone. Towards Bulgaria and the Mediterranean,
NPP variations decrease down to ~0.25 kgC*m™.

The effect of independently changing climatic drivers leads to elevated NPP variations in the
Continental and Mediterranean bio-geographical zones. The Alpine and Boreal zones as well
as areas of higher altitude seem to be less sensitive towards the independent changes.

The main driver of maximum total NPP values is high atmospheric CO, concentrations (600
to 700 ppm) in 89% of the grid cells. This is due to the effects of CO, fertilization as a main
driver of NPP as reported by Cramer et al. (2001). In the Norwegian Alpine zone elevated
temperature (2 - 3.5°C) leads to maximum total NPP values in ~10% of the grid cells.

Minimum NPP values are caused by rising temperature (5 - 6°C) in 55 % of the grid cells,
mostly in the Mediterranean and Continental bio-geographic zone due to water limitation
caused by high temperatures. Elevated summer (110 — 150%) and winter precipitation (140 —
150%) led to minimum NPP values in 12 % of the grid cells, mostly in the Alpine zone.
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Figure 12.3: Independent changes in climatic drivers that cause minimum and

maximum values of NPP in each cell. Showing the range of minimum and maximum

annual total NPP for each grid cell along the two transects: [upper] north to south-west

transect; [lower] north-west to south-east transect.

The combined changes in climatic drivers along the transect led to higher dynamics of NPP
compared to the independent changes. Figure 12.4 illustrates the range of NPP values
(maximum minus minimum NPP) for each grid cell. The first transect (red line in Figure
12.4) has small NPP variations in the Norwegian Alpine bio-geographical zones (~0.2
kgC*m™). From the Boreal zone in northern Sweden to the Continental zone in southern
Germany, NPP variations increase from ~0.2 kgC*m™ to ~0.5 kgC*m™. In the Alpine zone,
NPP variations decline to ~0.3 kgC*m™. High NPP variations (up to ~ 0.6 kgC*m) are
modelled in the Mediterranean zone of France and northern Spain. In central Spain NPP
values vary at an elevated level of ~0.35 kgC*m™ and increase strongly (0.4 kgC*m?)
towards the Atlantic coast.

The second transect (blue line in Figure 12.4) shows fluctuating NPP variations from
Scotland (~0.3 kgC*m™) through England and northern France (~0.4 kgC*m?) in the
Atlantic bio-geographical zone. However, there might be a slight increase of NPP to the east.
In the Continental zone the variations show a fluctuation of NPP values at a low level along
the transect (~0.45 kgC*m™). The NPP variations decrease in the Alpine zone to ~0.3
kgC*m™. From the eastern Alpine to the Pannonian zone, NPP variations increase by up to
~0.5 kgC*m. In the Romanian Alpine (Carpathian Mountains) zone, the variations show a
dip followed by a strong increase (~0.6 kgC*m™). Towards Bulgaria and the Mediterranean,
NPP variations decrease slightly to ~0.5 kgC*m™. In southern Greece NPP variations fall to
~0.35 kgC*m™.
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The climatic driver combinations of high atmospheric CO, concentrations (612.5-700 ppm)
and increased summer (125 - 150%) and winter (125 - 150%) precipitation led to maximum
NPP values in 52 % of the grid cells. In the Alpine zones increased temperature (+2-4°C),
high atmospheric CO, concentrations (612.5-700 ppm) and elevated summer precipitation led
to maximum NPP. Minimum NPP is caused mainly by high temperature (+6°C) and
decreased summer precipitation (50%) in 71% of the grid cells. The effect of changes in
winter precipitation vary, but it generally has less influence on minimum NPP compared to
the other drivers.

In the Norwegian Alpine zone minimum NPP is caused by increased summer and winter
precipitation. Temperature does not limit NPP production. The other European Alpine zones
are sensitive to increased temperature (+6°C) and decreased precipitation patterns, resulting
in minimum NPP values.
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Figure 12.4: Combined changes in climatic drivers that cause minimum and maximum

NPP. Showing the range of maximum and minimum annual total NPP for each grid cell

along the two transects: [upper] north to south-west transect; [lower] north-west to

south-east transect.

12.6 LPJ-GUESS meta-model illustrative results
The LPJ-GUESS meta-model produces outputs for NPP, LAI and potential biomass for the

species within the Plant Functional Type (PFT) selected by the user on the IAP. Figure 12.5
shows illustrative output for total potential NPP for the Boreal needle leaved evergreen tree
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and the Temperate broadleaved evergreen tree PFTs under a 2050s climate scenario based on
the CSMK3 climate model, the A1 emissions scenario and middle climate sensitivity.

()

Net Primary Production Net Primary Production

[ 0to1 kg/ha/yr

[ 1.01 to 400 kg/ha/yr
=3 400.01 to 800 kg/ha/yr
I 800.01 to 1200 kg/ha/yr
[ 1200.01 to 1600 kg/ha/yr

o o " N
[ ‘_434 }W | 1600.01 to 2128.56 kg/ha/yr

[J oto1 kg/ha/yr

[ 1.01 to 400 kg/ha/yr

| =3 400.01 to 800 ka/ha/yr

I 800.01 to 1200 kg/ha/yr
[l 1200.01 to 1600 kg/ha/yr
I 1600.01 to 2128.56 kg/ha/yr

I I i 5
bR Madrid NG, R

isbon : zn Isbon

Figure 12.5: Illustrative results from the IAP for total potential NPP for two plant
functional types under the CSMK3 climate model, the A1 emissions scenario and middle
climate sensitivity in the 2050s: Boreal needle leaved evergreen tree (left) and ??? (right).
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13. Development and validation of the SPECIES biodiversity meta-model

Paula A Harrison, Robert Dunford and Pam M Berry
Environmental Change Institute, University of Oxford, UK

13.1 SPECIES model description

The SPECIES model (Spatial Estimator of the Climate Impacts on the Envelope of Species;
Pearson et al., 2002) is used in the 1A Platform to simulate the impacts of climate change on
the suitable climate space of over 100 species. The species were selected to interact with the
agricultural, forest, coastal and water sectors and to indicate a range of ecosystem services
(pollination, berries for food from wild plants, charismatic or iconic wildlife for aesthetic
enjoyment, and species for hunting; see Section 14, Table 14.1).

SPECIES is based on ensembles of artificial neural networks (ANN), which integrate
bioclimatic variables for projecting the distribution of species through the characterisation of
bioclimatic envelopes. Integrated algorithms, including a soil water balance model, are used
to pre-process climate (temperature, precipitation, solar radiation and wind speed) and soils
(AWC — available water holding capacity) data to derive relevant bioclimatic variables for
input into the ANN. Those variables found to be most successful for projecting the
distributions of birds (Harrison et al., 2003) and other taxa (Berry et al., 2003) are given in
Table 13.1.

Table 13.1: Bioclimatic input variables used for birds and other taxa in the SPECIES
model (from Harrison et al., 2006).

Birds Other taxa

Growing degree days > 5°C Growing degree days > 5°C

Absolute minimum temperature expected Absolute minimum temperature expected over
over a 20-year period a 20-year period

Mean summer temperature (MJJ)? Annual maximum temperature

Mean summer precipitation (MJJ) Accumulated annual soil water deficit

Mean winter precipitation (DJF)" Accumulated annual soil water surplus

Mean summer water availability (MJJ)?

& May, June, July
b December, January, February

The model is trained using existing empirical data on the European and North African (north
of 15°N) distributions of species to enable the full climate space of a species to be
characterised and to ensure that the model does not extrapolate outside its training dataset
when used to project the distribution of species under potential future climates in Europe. To
improve performance, these variables, which can vary by several orders of magnitude, are
first normalised to the range 0 to 1 using the minimum and maximum values for the European
and North African region (Tarassenko, 1998) before proceeding with model training.
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13.2 SPECIES model calibration and validation

The SPECIES model ANNSs are calibrated and tested using an ensemble forecasting approach
whereby projections are derived by constructing and training multiple ANNs for a single
species (O’Hanley, 2007; 2009). The outputs from each of these models are then combined
together in order to generate a final composite projection. There is a large body of statistical
theory and practical work showing the superiority of ensembles over the use of any single
model (Naftaly et al., 1997; Sharkey, 1999; Granitto et al., 2005).

Ensemble forecasting in SPECIES has been carried out using an aggregate k-fold cross-
validation. This involves randomly subdividing the available data into training (70%) and
validation (30%) sets k times in order to construct k different ANN sub-models. Each sub-
model is calibrated on one of the training sets and then independently tested on the
complementary validation set in order to calculate statistics indicating its performance
accuracy. Each training and validation set is constructed so that it contains the same
presence-to-absence ratio as seen in the full dataset, thus eliminating any representational
bias in the datasets between presence and absence points. Bootstrapping is then used to
construct training and validation sets which are the same size as the full dataset and
containing equal numbers of presence and absence points. This ensures that the datasets have
a 50/50 prevalence between presence and absence points, thereby reducing any sensitivity
bias in the trained models towards projections of overly high or low suitability values.

A value of ten for k was chosen based on preliminary tests showing this value as giving a
good trade-off between greater model stability / reduced spatial variance and longer model
running times.  An ensemble model output is then formed by combining the simulations
from the ten ANN sub-models based on whether presence or absence is most commonly
projected for a grid cell.

The performance of each ANN sub-model is statistically evaluated using Cohen’s Kappa
statistic of similarity (K) and the Area Under the Receiver Operating Characteristic Curve
(AUC). Kappa is a commonly used statistic that provides a measure of similarity between
spatial patterns, adjusted for chance agreement (Cohen, 1960). Kappa values vary from 0,
indicating no agreement between observed and projected distributions, to 1 for perfect
agreement and are dependent on the particular classification threshold being applied for
determining whether simulated results are treated as presence or absence points. Maximum
agreement for Kappa is calculated by iteratively adjusting this threshold from 0 to 1 in
increments of 1x10™. AUC is calculated from plots of the Receiver Operating Characteristic
(ROC) curve. ROC curves measure the trade-off between a model’s sensitivity (the
proportion of true presences to the actual number of projected presences) and its false
positive fraction (the proportion of false presences to the actual number of projected
absences) as a function of all possible classification thresholds. This index is an unbiased
measure of a model’s predictive accuracy and is independent of both species prevalence in
the validation dataset and classification threshold (Fielding & Bell, 1997). AUC ranges from
0.5 for models with no discrimination ability, to 1 for models with perfect discrimination.

The accuracy of the ensemble model, as measured by AUC and Kappa, is approximated by
the average performance of the ten individual sub-models. This provides a conservative
estimate of the ensemble’s accuracy as its performance is usually at least as good as this and
usually even better (Bishop, 1995). There are several rules-of-thumb available to help
interpret measures of agreement between observed and simulated distributions. For example,
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Monserud and Leemans (1992) suggest the following ranges of agreement for Kappa:
excellent K>0.85; very good 0.7<K<0.85; good 0.55<K<0.7; fair 0.4<K<0.55; and poor
K<0.4. For AUC, Swets (1988) recommends interpreting values using the ranges: excellent
AUC>0.90; good 0.80<AUC<0.90; fair 0.70<AUC<0.80; poor 0.60<AUC<0.70; fail
AUC<0.60.

Models have been trained and validated for all 111 species and all show AUC statistics
greater than 0.8, indicating good discrimination ability and 84% has AUC statistics greater
than 0.9, indicating excellent model performance. Kappa values are slightly lower, but this is
to be expected as the index ranges from 0 to 1. Values were greater than 0.7 for 47% of
species indicating very good agreement between observed and simulated distributions, and
between 0.4 and 0.7 for 35% of species indicating reasonable agreement. Further visual
comparison between observed and simulated distributions was being undertaken (e.g. Figure
13.1) and any models that were unable to capture the core observed distribution were
removed from the 1AP.

M Present
[ Absent
@ observed

Figure 13.1: Comparison between the observed (red dots) and simulated (green grid
cells) distribution of Filago pyramidata (broadleaved cudweed) for the baseline climate
(1961-90).

Once a network is trained and validated for the European and North African region, it is then
applied across the CLIMSAVE 10’ European grid to produce a climate suitability surface.
This is converted into a presence/absence distribution (see Figure 13.2) by applying the
decision threshold which maximises agreement between observed and simulated distributions
derived from the ROC curve. Further details concerning the definition of decision thresholds
are provided in Pearson et al. (2002).
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AV

Figure 13.2: Hlustrative results for Silene gallica (small-flowered catchfly) for Europe:
(left) simulated climate suitability surface; (right) presence/absence distribution.
Presence/absence ROC threshold is 0.22, AUC = 0.943, maximum Kappa = 0.64.

13.3 SPECIES model illustrative results

The user selects in the IAP interface a group of species, such as agricultural plant species,
agricultural non-plant species, saltmarsh species or hunting species, which they would like to
run. This cuts down the overall runtime for the IAP as running all 111 species at once would
take several minutes. Each group contains between 3 and 10 species which enables the
model to run more quickly.

13.3.1 Species suitable climate space

Figure 13.3 shows illustrative results for changes in the suitable climate space for Filago
pyramidata (broadleaved cudweed; the baseline results are shown in Figure 13.1). With its
predominantly Mediterranean and North African range, it is not surprising that current
climate space is not threatened. The modelled polewards expansion of suitable climate space
in the UK and into Germany and Scandinavia may offer potential for the cudweed’s
expansion, but it depends on the management of agricultural land and on whether it can
disperse to suitable chalky or calcareous sites. The loss of climate suitability in Spain and
parts of the eastern Mediterranean are likely to be due to increased temperatures and
associated reductions in water availability, as while it is found on well-drained sites, moisture
is important for seed germination.

13.3.2 Species vulnerability

Two species vulnerability indices are calculated from the outputs of the SPECIES model for
the European region as a whole and for individual EU countries: vulnerability assuming no
use of new climate space and vulnerability assuming full use of new climate space (Berry et
al., 2006). Each index is a function of the amount of change in suitable climate space, which
is measured in terms of four species’ indicators: new climate space; lost climate space;
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overlap between present and future climate space; and size of the future distribution. Lost
climate space indicates the sensitivity or degree of change. In reality, it is more likely that
losses will be realised, as the species becomes stressed, less competitive and ultimately
exhibits a mortality response. Gained or new climate space indicates the degree of
opportunity for species to disperse and increase its range and thereby decrease its
vulnerability. Overlap between present and future climate space indicates the continuity of
suitable climate space. This measure also indicates the degree of threat to a species, as where
there is little overlap between a species’ current and potential future climate space, there
could be a small population remaining in situ and the species will be forced to disperse if it is
to realise much of its future climate space. Dispersal for some species is difficult and slow,
thus they will become vulnerable. The size of the future distribution indicates the future
rarity of species, as rarity is one factor thought to confer vulnerability to climate change
(Berry, 2004).

Change in suitable climate space

1 Absent

B Lost climate space
Ml New climate space
=

Overlap in climate space

Figure 13.3: Hlustrative results from the IAP for changes in suitable climate space for
Filago pyramidata (broadleaved cudweed) under the climate scenario: CSMK3 climate
model, A1 emissions scenario and middle climate sensitivity for the 2050s.

The Vulnerability Index with no use of new climate space assumes that autonomous
adaptation is restricted to within the boundaries of the 10’ grid cells which the species
currently occupies, due to limited dispersal and there is no new planned adaptation. The
Vulnerability Index with full use of new climate space assumes that autonomous and planned
adaptation will take place to help species disperse into new areas. The degree to which
planned adaptation can be implemented is assumed to be a function of the extent of new
climate space, as this indicates the limit of the species’ potential future distribution. Both
indices range from 0 for no vulnerability to 20 for high vulnerability to climate change
(Figure 13.4).
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Figure 13.4: lllustrative output for the SPECIES vulnerability indices for Europe.

13.4 Integrating the SPECIES model with the other sectoral meta-models
13.4.1 Agricultural and forest meta-models

Predictions of potential climate space from the SPECIES model are combined with output on
the area of arable and forest land, nitrogen and pesticide inputs and overwinter stubble from
the SFARMOD land use model (Section 10) to simulate the impacts of climate and socio-
economic changes on species’ suitability in agricultural and forest habitats. The area of
arable and forest land is used to create a habitat mask, which can optionally be applied to the
species suitability maps. This habitat mask therefore alters with the climate and socio-
economic scenarios depending on the spatial distribution of arable agriculture and forestry
within the land use model.

The effects of nitrogen inputs on plant species are simulated by applying thresholds based on
an individual species’ sensitivity to nitrogen derived from the Ellenberg indicator values for
Europe (Ellenberg, 1974; Ellenberg et al., 1991). The various values were divided into
classes indicating low, medium or high tolerance to nitrogen increases, as the Ellenberg
values are on an arbitrary scale and species’ ecological requirements may vary in different
parts of their range and according to local conditions, thus a broad classification was
appropriate. The species’ nitrogen tolerances were linked to data on nitrogen inputs from the
agricultural land use model based on results from Audsley et al. (2008) which attributed
thresholds to the plant tolerance classes. Illustrative output on combining the effects of
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nitrogen inputs with the SPECIES climate space outputs for the region of East Anglia in the
UK is shown in Figure 13.3.
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Figure 13.3: Sensitivity of Scandix pecten-veneris (shepard’s needle) in East Anglia, UK
derived from combining results from the SPECIES model with nitrogen fertilizer values
from the SFARMOD agricultural land use model. Source: Audsley et al. (2008).

The effects of pesticide inputs on plants and pollinators are simulated by applying thresholds
based on an individual species’ sensitivity to pesticide derived from a literature review. The
various values were divided into classes indicating low, medium or high tolerance to
pesticides, as the species’ tolerance may vary according to the pesticide type and thus a broad
classification was appropriate. In each case, evidence for the highest level of sensitivity was
used.

Overwinter stubble provides important habitat for ground nesting birds and can be an
important food source during the winter. The effects of overwinter stubble on birds are
simulated by applying thresholds based on an individual species’ sensitivity to percentage
changes from base in the amount of overwinter stubble per 10’ grid cell from the agricultural
land use model (Section 10).

13.4.2 Water meta-model

Predictions of potential climate space from the SPECIES model are combined with output on
low and high river flows (Q95 and Q5 values, respectively) from the water model (WGMM-
Section 8) and habitat data on wetlands from the flooding model (CFFLOOD- Section 7) to
simulate the impacts of climate and socio-economic changes on species’ suitability in
wetland habitats. The area of inland wetlands is used to create a habitat mask, which can
optionally be applied to the species suitability maps. This habitat mask therefore alters with
the climate and socio-economic scenarios depending on the spatial distribution of wetlands
within the CFFLOOD model.

The effects of low and high river flows on wetland species are simulated by applying
thresholds based on an individual species’ sensitivity to drought and waterlogging derived
from Ellenberg indicator values (Ellenberg, 1974; Ellenberg et al., 1991). The various values
were divided into classes indicating low, medium or high drought or flooding tolerance, as
the indicator values are on an arbitrary scale and species’ ecological requirements may vary
in different parts of their range and according to local conditions and thus a broad
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classification was appropriate. The species’ water level requirements were linked to the
outputs from the water model based on results from Harrison et al. (2008) which attributed
thresholds to the plant tolerance classes. Illustrative output on combining the effects of water
stress with the SPECIES climate space outputs for north-west England is shown in Figure
13.4.
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Figure 13.4: Sensitivity of Sphagnum cuspidatum in northwest England derived from
combining results from the SPECIES model with Q95 values from a hydrological
model. Source: Harrison et al. (2008).

13.4.3 Coastal flooding meta-model

Predictions of potential climate space from the SPECIES model are combined with output on
the area of salt marsh and coastal and floodplain grazing marsh from the coastal model
(CFFLOOD - Section 7) to simulate the impacts of climate and socio-economic changes on
species’ suitability. Changes in the area of salt marsh and coastal and floodplain grazing
marsh simulated by the coastal model are directly overlaid onto the climate space simulations
to create a habitat mask, which can optionally be applied to the suitability maps. This habitat
mask therefore alters with the climate and socio-economic scenarios depending on the spatial
distribution of these habitats within the coastal model.

13.4.4 Habitat re-creation

A habitat re-creation slider on the adaptation screen of the IAP allows the user to increase the
percentage of protected areas (Natura 2000 sites). The percentage of land within a grid cell
classified as a protected area is used as an input into the SFARMOD land use model (see
Section 10), and thus affects the land use allocation and, hence, the habitat available for
different species. There are three protected area sliders and 4 buttons on the 1AP:

1. Protected Area changed (%): This determines how much protected area, relative to
current day protected area, is allocated.
2. Change in protected area for forests.
3. Change in protected area for agriculture.
a. Sliders (2) and (3) are used to determine to which land use the protected area is
allocated (either forestry, agriculture or non-productive land, such as semi-natural
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grassland, moors, bogs, etc). If the forest and agricultural sliders are less than 100%
the remaining proportion is allocated to non-agriculturally productive land.
4. The buttons determine how protected area (PA) is allocated:

a. Connectivity — allocates preferentially to areas with no existing PA (creates new
sites).

b. Buffering — allocates preferentially to areas with existing PA (enlarges existing
sites).

c. Buffering then connectivity — allocates all possible PA by buffering method, and any
remaining PA by connectivity.

d. Connectivity then buffering — allocates all possible PA by connectivity, and any
remaining PA by buffering.
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14. Concluding remarks

Table 14.1 summarises the range of stakeholder-relevant impact indicators and indicators
which translate the outputs from the integrated sectoral models into ecosystem services
indicators which the meta-models each simulate. The impact and ecosystem service
indicators listed in Table 14.1 may be subject to change, depending on the feedback received
from stakeholders within the WP1 workshops.

The focus of activity within the next phase is to complete the implementation of the meta-
models within the Platform (D2.3), ready for testing of the prototype Platform (M2.2).
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Table 14.1: Summary of current sectoral output and potential ecosystem service
indicators produced by the meta-model DLLs.

Sector Meta-model Sectoral output indicators Ecosystem Service
DLL indicators
Urban RUG o Artificial surfaces (area and % change) N/A
. Area of residential and non-residential
areas
Snow SnowCover . Days with > 1 cm and > 10 cm snow . Recreation (C)
Cropping metaROIMPEL . Crop yields (unlimited by nutrients and | N/A
water availability; unlimited by nutrients
availability; and limited by nutrients and
water availability
Forestry metaGOTILWA+ | e Wood yield in managed forests . Timber production (P)
. C sequestration (R)
e Cbalance (R)
e  Water storage in soils (R)
. Naturalness, tranquillity,
isolation (C)
Rural land | metaSFARMOD | ¢ Total crop production . Food production (P)
use e  Biomass energy e  Animal production (P)
e Food energy e  Bioenergy production (P)
. Irrigation water demand e  Fibre production (P)
. Intensively  farmed, Forested and | e Irrigation use (P)
Abandoned land e  Attractiveness of agricultural
landscapes (C)
e  Naturalness (C)
Water WGMM e Naturalised high & average monthly river | ¢  Drinking water (P)
flow e  Cooling water (P)
e  Water availability e  Water storage (R)
e  Water availability per capita .
e Real low, average and high flows
e  Water stress
e  Total water use
Flooding CFFlood . Area at risk of flooding . Flood protection (R)
e  Damages caused by flooding
e  People affected by flooding
. People in flood risk zones
e  Areas of coastal grazing marsh, salt marsh,
intertidal flats and inland marshes
Pests Pestmm e Number of generations per season (6 | N/A
species)
e  Ecoclimatic index (quality of the ecoclimatic
niche for 6 species)
Biodiversity SPECIES . Species Presence/Absence . Wild food plants (P)
e  Species Vulnerability Indices e  Poallination (R)
e  Charismatic or iconic wildlife
©
e Species for hunting (C)
metalLPJ- e Net Primary Production (by Plant | ¢ Biomass production (P)
GUESS Functional Type, species and grid square) e  Timber production
e Biomass (by Plant Functional Type, (Provisioning)

species and grid square)

Vegetation influence on local
climate (Regulating)

Attenuation of runoff
(Regulating)
Attractiveness  of  forest

landscapes (C)
Charismatic or iconic wildlife

©
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