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0. Preface

This document is CLIMSAVE Deliverable D4.3 “Estimated costs of adaptation options
under climate uncertainty”.

In accordance with the CLIMSAVE DoW, WP4 deals with the assessment of cross-sectoral
adaptation measures. It identifies those sectors (and their components), which are most
exposed and sensitive to climate change, and develops metrics for cross-sectoral
comparison. Social, economic and environmental indicators for the assessment of adaptive
capacity are reviewed and selected, and the implications of adaptation options for mitigation
explored to identify synergistic and antagonistic interactions.

Specifically, subtask 4.4 aims at refining, adapting and standardising cost-effectiveness
analysis (hereafter CEA) in order to cope with adaptation issues. The cost-effectiveness of
well-defined adaptation strategies (on project and policy levels) will be determined by
valuing the net cost of adaptation options vis-a-vis output performance (technical
effectiveness) under climate uncertainty. This requires a range of economic and statistical
techniques and concepts (both deterministic and probabilistic) and takes into account
ancillary costs and benefits due to cross-sectoral antagonistic and synergistic effects. Non-
economic approaches are also developed in this deliverable to complement the financial
approach. Appropriate adaptation cost functions are developed and tested for their suitability
within the IA platform.

1. Introduction

Public funds allocated to the protection of the environment are increasingly subjected to a
‘sustainability performance test’. This is more so amidst financial austerity and increasing
labour unemployment, where international financing agencies and national governments
alike feel compelled to assure markets and electorates that spending decisions obey the
‘value for money’ imperative. As a natural corollary, there is demand for financial and
economic analyses of the costs and benefits of alternative projects and/or policy measures.

Climate change is a prominent terrain where a number of contested policy decisions have to
be taken and is, therefore, an extensive and multifaceted arena of hypothesis testing and
empirical application of financial and economic approaches to the (e)valuation of options.
Both cost-benefit (CBA) and cost-effectiveness (CEA) analyses have been applied in the
mitigation arena. They have been applied to a lesser extent in the adaptation areana, since
uncertainties in mitigation propagate towards adaptation, making the application of CBA
and CEA less amenable. This is conceptualised in Figure 1, where the magnitude of
potential adaptation (AC) depends on the (uncertain) residual impacts linked to the
(uncertain) amount of mitigation already undertaken (DC). Unmitigated impacts of climate
change (AC) represent the upper bound of adaptation (with zero adaptation as the lower
bound). Between these bounds, economists usually advise for an optimal investment in
adaptation, that is, a level where marginal cost outweighs marginal benefits. In reality
though, the amount of adaptation realised (AB) depends on an array of possibilities and
constraints.
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Figure 1: Adaptation potential.

Within CLIMSAVE’s research strategy, the rationale for addressing the issue of cost-
effectiveness is threefold: Firstly, it is a pragmatic methodological choice as the alternative
of using CBA in defining optimum adaptation levels remains surrounded by a host of time
and resource consuming implementation problems. In this respect, CEA is more economical
in terms of time and resources and, therefore, ‘decision-maker friendly’. Secondly, CEA has
proven its capacity to address a number of similar issues in the domain of health
management where uncertainties on cost and the effectiveness of i.e. new treatments, are
large. Last but not least, by defining exogenously the target to be achieved with the least
cost, CEA has less the flavour of a fully-fledged economic rationale than CBA with its
welfare theoretical basis. This makes CEA attractive to both climate scientists and activists.
The structure of CEA within the general structure of WP4 is illustrated in Figure 2.

This report describes the CEA methodology and how we have implemented this in
CLIMSAVE. We address key methodological issues referring to uncertainty and report in
detail on specific topics. We conclude with insights gained and proposals for the further
development of the CEA methodology.
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Figure 2: The relative position of the CEA within WP4.

2. Definitions and concepts

Adaptation, as defined by the Intergovernmental Panel on Climate Change (IPCC), is an
“adjustment in natural or human systems in response to actual or expected climatic stimuli
or their effects, which moderates harm or exploits beneficial opportunities” (IPCC, 2001).
However, in relation to concrete applications there is often a lack of broad agreement about
what should and should not be included under adaptation'. The reason for this is that
adaptation is highly complex, spatially specific, and that genuine risk and uncertainty issues
surround all its cross-sectoral repercussions, along with the timing and effectiveness of
measures.

There are multiple types of adaptation, including anticipatory, reactive, autonomous and
planned adaptation. In CLIMSAVE the main focus is on planned adaptation, i.e. adaptation
that requires some level of organisational or policy intervention, although some forms of
autonomous adaptation are included within the meta-models within the Integrated
Assessment Platform (IAP). Such planned adaptation includes not only ‘hard’, engineering
options; it also includes market or non-market behavioural changes known as ‘soft’
adaptation.

Cost-effectiveness analysis (CEA) is one of the many analytical techniques for assessing and
ranking climate change impacts and adaptation measures”. CEA can be used to identify the
highest level of a physical benefit given the available resources (e.g. delivering the
maximum reduction in risk exposure subject to a budget constraint), as well as the least-cost
option (including a combination of options) for reaching a prescribed target (e.g. the supply
of a given quantity of potable water). It is the latter form (i.e. searching for least cost
solutions), which CEA customarily takes in health, water and climate economics. Because it

! For example, any self-induced, market-based change in consuming and producing patterns could in principle
be regarded as adaptation as far as it directly or indirectly affects future climate damages. Or, should we count
all educational or political measures contributing to the enhancement of human and social capital, and
consequently adaptive capacity, as adaptation? See Callaway (2003).

2 Others include: Cost-benefit analysis, risk analysis, multicriteria analysis, risk-efficiency analysis.
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ranks options, CEA represents a decision support framework. It relies on the basic
assumption that we are able to estimate with reasonable certainty the unit cost of achieving a
predetermined level of adaptation for a number of alternative adaptation options (measures,
projects, or technologies) or a combination of options. The latter points to the need to
distinguish clearly rivalry in application between the options: for technological (or any
other) reasons, not all options can be combined with one another. Such conflicts in
application should be noted and taken care of when calculating the least cost combination.

The aim of the CEA is to find the least costly option(s) for meeting selected targets. The
targets represent the ‘benefits’ of the options that, in contrast to CBA, are measured in non-
monetary units (e.g. protecting x km? of coastline; keeping the risk of flooding under a fixed
level). Here lies the first difficulty with the conceptual delimitation of adaptation options:
whereas in the mitigation domain a physical measure of effectiveness (and consequently
benefit) is readily available (equivalent t CO, abated), this is obviously not the case with
adaptation options. In contrast to mitigation, the physical outcome of adaptation varies by
sector, location and technology. While thus the output (or benefit) of competing, specific
adaptation options should in principle be the same or, at least, similar, we face a multitude of
metrics with which to express this output.

To create further difficulty, some adaptation investments are joint production processes,
meaning that they may address multiple climate impacts simultaneously. CLIMSAVE
explicitly addresses joint adaptation processes by focussing on inter- or intra-sectoral
adaptation and mitigation synergies (Task 4.3). The possibility of identifying all possible
synergistic and/or antagonistic effects across sectors is constrained by the fact that CEA is
essentially a partial, rather than a general equilibrium approach. However, adaptation
investments may have ancillary benefits or costs within a sector or between ‘neighbouring’
sectors, which can be easily traced and taken into account. In this case, the optimisation
process, and consequently the algorithm through which the least cost solution is calculated,
turns out to be much more complicated. If the by-products of a specific adaptation
investment can be easily monetised, then this difficulty can be overcome by subtracting (or
adding) any positive (or negative) by-products from the financial cost of the measure. This
in turn entails that we take into account any savings due to positive, or excess, costs due to
negative externalities, however this is generally not feasible or appropriate.

The problem with metrics for outputs complicates the clear delimitation of costs on the input
side. The IPCC Fourth Assessment Report defines adaptation costs as “the costs of planning,
preparing for, facilitating, and implementing adaptation measures, including transition
costs”, while the definition for adaptation benefits is “the avoided damage costs or the
accrued benefits following the adoption and implementation of adaptation measures”
(IPCC, 2007). As with mitigation, adaptation costs can be either economic or financial.
There is a very important difference between the two:

a) Financial cost is budgeted, historical or projected, investment expenditure within
the budgetary framework of the adaptation strategy or intervention under
consideration.

b) Economic cost is a wider concept that includes, besides out-of-pocket financial
expenditure, an estimation of opportunity cost, i.e. benefits forgone from not
investing in other areas of economic and social interest due to the employment of
resources in the specific adaptation project. Opportunity cost is an indication of
what alternatives must be sacrificed to obtain something. In the climate adaptation
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context, it is a measure of forgone social benefits (income, employment, leisure
etc.) when scarce resources are employed in order to adapt to a negative climate
impact, instead of putting those resources to their next best use. Additionally,
opportunity costs typically exclude ‘transfer payments’, such as domestic taxes
and charges.

Opting to work with economic or financial cost does make a difference for the ranking of
alternative investments because equal amounts of expenditure may have different
opportunity costs. This is particularly the case for planned adaptation, where the allocation
of public funds is at stake, whereas autonomous adaptation is undertaken with mostly
private funding. Nevertheless, in order not to add unnecessary complication to the costing
procedure, we opt in CLIMSAVE to work with financial cost. For the same reason, we also
disregard any transaction costs incurred by the design, implementation and maintenance of
adaptation investments.

Costing of adaptation measures is usually based on investment and financial flow analysis.
Depending on the time horizon of the investment and the ‘time slices’ allowed for by the
analyst, adaptation costs are calculated according to standard investment appraisal
procedures and expressed in Net Present Values (NPVs) and/or in annual equivalents
(annuities). The calculation of both NPVs and annuities assumes the use of discount rates.
The selection of a suitable (social) discount interest rate is a vital parameter for similar long-
term estimations. Economic theory and practice are not in a position to provide a definite
answer on the choice of discounting rates, since in essence the issue of discount interest rate
is a moral issue related to perceptions of intergenerational justice. For example, in OECD
countries, the proposed discount interest rates for long-term investments range between 3
and 12% (OECD, 2007). The European Union recommends a 4% interest rate for mid- and
long-term investments, but also accepts implementation of lower interest rates in the case of
extended timelines, such as climate change (European Commission, 2005). In accordance
with usual practice, we consider a suitable social discount rate for adaptation to be in the
range of 1% to 3%.

The time horizons for adaptation investment can be very long (> 50 years). However,
horizons which are too long, i.e. past 2050, would in principle make the estimation of
annuities impossible because adaptation should then be seen as a complex and evolving
sequence of events, varying over time and requiring further learning and iteration. Such
dynamic effects are extremely difficult to include in a cost-effectiveness analysis without
multiple assessments over different time periods. Furthermore, the flexibility of an ‘adaptive
adaptation strategy’ (AAS) is reduced the longer is the time horizon of an adaptation
investment due to processes of technological and financial lock-in. It would make economic
sense for a CEA if different adaptation options with equal NPVs could be weighted
according to the degree of flexibility they provide to managers for future adjustments. Such
a ‘flexibility premium’ would ceteris paribus favour more flexible over non-flexible
adaptation strategies.



3. Cost-effectiveness analysis and methods for the treatment of uncertainty
3.1 General framework of the CEA

The implementation of cost-effectiveness analysis for the assessment of climate change
adaptation policies and projects includes the steps depicted in Figure 3. A brief description
of these steps is provided as follows:

Step 1: Scoping the problem

The main scope of the examined problem must be defined in order to clarify the boundaries
and the potential limitations of the performed analysis. The adaptation calculus assumes the
choice of a specific baseline, and inaction and mitigation scenarios in order to delimit the
adaptation potential, AC. Scoping the issue further includes fixing the sector and impacts of
interest, investigating possible cross-sectoral effects, setting the time horizon of the
investigation, deciding whether to work with financial or economic cost, locating existing
cost estimates and relevant databases, deciding on how to address uncertainty, and assessing
the adaptive capacity of regions and social groups, etc.

Step 2: Fixing the adaptation target

CEA begins with a fixed adaptation target to be achieved. As is usual in similar comparative
assessment methodologies, targets are fixed as a difference in the final states which would
be achieved both ‘with’ and ‘without’ implementation of the project. Therefore, the
adaptation target is defined as future avoided risks or damages of climate change in relation
to the baseline future risks or damages accruing under the ‘business-as-usual’ scenario.

The adaptation target is defined as the total damages or the annual flow of avoided damages
over the lifetime of the project expressed in the suitable metric (i.e. population protected
from accelerated sea level rise, or achieving residential standards for cooling or heating).
Since it is assumed that a CBA for the determination of an optimum adaptation target is not
feasible or preferred, targets should be fixed through a number of alternative procedures and
criteria, such as the availability of public funds, maintenance of socially acceptable risk
levels, remaining below scientifically established critical thresholds, etc. To complicate
matters, adaptation strategies may address multiple objectives at once, in which case targets
are joint products of a common adaptation process. An “adaptation portfolio” is then chosen
as a means to insure against uncertainty.

Step 3: Delimit the set of feasible interventions

The appropriate set of interventions must be selected carefully to meet the main target of the
analysis. CEA is very sensitive to the choice of strategies being compared. The selection of
the options depends on the characteristics of the examined sector. These interventions can
include policies, investment opportunities, programs or measures. For each intervention,
detailed technical description and planning are necessary for the identification of possible
conflicts for application, complementarities, economies of scale, and regional/national
constraints in their use. The choice between hard and soft interventions is crucial here as is
taking available cost databases into consideration. The number of alternative interventions
under consideration must be within the computing capacity of algorithms and the software



used for the assessment of least cost solutions. Finally, the timing of the investment and its
economic and engineering life cycle should be established.

Step 1: Scoping the problem
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Figure 3: Basic steps performed in a cost-effectiveness analysis.

Step 4: Fixing the timing and duration of adaptation investments

A crucial issue in CEA is the identification of the timing and duration of each of the feasible
adaptation options selected in Step 3. This requires the specification of the base year, when
the investment will be initiated, and the duration of its operation. Adaptation may refer to
current measures to deal with existing risk (synchronous adaptation), current measures for
future risks (proactive adaptation), or future measures to manage future risk (perspective
adaptation). Time may be expressed as continuous or, as it usually the case in relevant 1A
models, in a comparative static approach, i.e. as discrete ‘time slices’. Analytical choices in
matters of timing are of crucial importance for the results of the CEA due to the
unpredictable influence of discount rates on the final ranking of the options.



Step 5: Costing adaptation investments

All the components of cost must be identified and calculated as precisely as possible. This
step demands the calculation of construction cost, maintenance cost and transaction cost,
minus any cost savings due to positive synergies and cross-sectoral effects. The cost of
possible structural investments in a specific sector planned under the conditions of the
baseline scenario, should also be subtracted from the total adaptation cost estimates to obtain
the net adaptation cost. Of course, it is possible to consider baseline scenarios as entailing no
investment, in which case the latter cost item is zero. Aggregated cost estimates must be
discounted at net present values and expressed in annual equivalents with an appropriate
discount rate. The former applies to both hard and soft adaptation measures although it is
obvious that costing soft measures in practice will incur numerous problems.

In general, the net present value (NPV) of an adaptation investment (i) and its annual
equivalent, Ai, can be presented as in the following equations:

C;t
NPV, = Yigin (1+7)t
and
A; 1
NPV =1 -]
where

Ci' = The net annual cost of adaptation investment in year t (to+n < t < T) planned to
be implemented n years from now (to+n) With a duration of T — n years [to., to T].

r = the discount rate

T = the planning horizon

A = the annual equivalent (annuity) of investment i.

The net annual cost C;' is the sum of annual financial cost C¢' (construction and maintenance)
plus annual transaction cost Cy, minus any annual cost that can be characterised as baseline
cost Cpase’ plus the net effect of ancillary, inter- or intra-sectoral impacts of the investment
undertaken. That is:

Ci' = Cf + Cy, - Chase + [ANC{' —AnB;]

where AnC;' denotes annual ancillary cost and AnB;' annual ancillary benefits of investment
i.

In order to complete the picture, a weight factor indicating the effect of natural, human and
social capitals on net annual cost Ci' is also needed in order to quantitatively link adaptive
capacity and cost-effectiveness.

Step 6: Calculation of cost-effectiveness indicators
The cost-effectiveness of each examined adaptation option is assessed with the help of
appropriate cost-effectiveness indicators. The most efficient cost-effectiveness indicator in

each case must be selected and calculated taking into consideration the special
characteristics of each examined sector separately and the specific aim of the analysis. The
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cost-effectiveness ratio is the most often used indicator. It is calculated as the net cost of an
intervention per unit of achieved adaptation.

There are two different categories of cost-effectiveness ratios:

Average cost-effectiveness ratio (ACER) estimated as total NPVi of adaptation investment i
divided by the total avoided damages (Dav) according to the following equation. This type
of ratio is utilised for the evaluation of a single intervention against the baseline.

NPVi—NPVj
Dav,i—Dav,j

ICER =

Incremental (marginal) cost-effectiveness ratio (ICER) estimated as additional net cost of
implementing a particular intervention divided by the additional net damage avoided. ICER
is used for the evaluation of an adaptation investment i compared to an alternative, existing
adaptation investment j in a specific year. In the following equation adaptation investments i
and j are compared.

NPVi—NPVj
Dav,i—Dav,j

CER =

Step 7: Implementation of uncertainty analysis

An uncertainty analysis must be conducted in order to check the robustness of the obtained
cost-effectiveness indicators. Important prerequisites for the fulfilment of CEA constitute
the detection of all uncertain parameters, the assessment of their fluctuation, the
recalculation of all net costs and net benefit components taking into consideration their
variance, and examination of the effects on cost-effectiveness of the examined interventions.
The main uncertain parameters, which must be assessed for the acquisition of reliable
results, are presented in the Table 1.

Table 1: Main uncertainty parameters within CEA.

Uncertainty domain Component

Construction cost

Operational and maintenance cost

Estimation of net investment cost - —
Other transaction and institutional costs

Discount rate

Direct damage avoided

Indirect damage avoided

Quantification of effectiveness - -
Direct baseline damages

Indirect baseline damages
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3.2 Marginal Adaptation Cost Curves (MAdCCs)

Similar to Marginal Abatement Cost Curves (MACCs) applied in the existing mitigation
literature, the emerging idea of Marginal Adaptation Cost Curves (MAdCCs) could be of
interest in the comparison of cost-effectiveness of various adaptation options. In contrast to
mitigation, however, where a clearly defined metric of effectiveness (equivalents of t CO,
abated) allows a relatively simple ranking of alternative technologies, this is not the case in
the adaptation domain. Here, the multitude of metrics and the spatial/sectoral differentiation
of adaptation conditions do not easily allow for an unequivocal ranking of adaptation
measures - unless in a very narrowly defined setting. Nevertheless, we pursue further the
idea of MAdCCs in CLIMSAVE in an effort to enrich our CEA estimation procedure.

In the published literature various attempts have been made to develop Marginal Abatement
Cost Curves (Hogg et al., 2008; MacLeod et al., 2010). The main research interest of
Marginal Abatement Cost Curves has been to identify the relationship between the cost of
different technologies or measures and the annual reduction of CO, emissions. These curves
can simplify the procedure for the identification of the marginal abatement cost for the
achievement of a specific CO, emissions reduction, the estimation of the total abatement
costs for the fulfilment of this aim and the determination of a specific emissions budget for
avoiding climate change impacts (Wreford et al., 2010). A typical Marginal Abatement Cost
Curve is presented in Figure 4.
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Figure 4: A typical Marginal Abatement Cost Curve. Source: McKinsey (2007).

The MAdCCs have an identical shape with the corresponding Marginal Abatement Curves,
and the main point of differentiation is that they depict the relation between adaptation cost
and the total achieved degree of adaptation. More specifically, MAdCCs provide a ranking
of the examined adaptation technologies or measures according to their cost-effectiveness,
which is presented by the vertical axis. Correspondingly, the horizontal axis shows the
achieved degree of adaptation, which is equal to the damage avoided by the implementation
of the examined adaptation technologies or measures. The degree of adaptation is estimated
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by comparing the baseline scenario (where no implementation of adaptation technology or
measures is assumed) with a scenario in which specific adaptation schemes are
implemented. The figure indicates that the cost-effectiveness of the examined technologies
or measures decreases for higher degrees of adaptation. A typical MAdCC is presented in
Figure 5.

Adaptation Supply Curve
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Adaptation a Adaptation b Adaptation c

Cost of Adaptation
w
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o ) . )
] 2 3 4 5 6 7 8 9 10
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-1

Degree of Adaptation

Figure 5: A typical Marginal Adaptation Cost Curve (MAdCC).

For a specific degree of adaptation represented by the x-axis, different adaptation
technologies or measures can be characterised by their vertical positions in relation to the
MAJdCC, leading to the conclusion that some of them are cost saving, while others not
(MacLeod et al., 2010; Moran et al., 2010). Moreover, MAdCCs offer the opportunity to
identify a threshold cost, which can lead to a specific degree of adaptation. The
determination of this least cost is crucial for the effective assessment of potential adaptation
investments and projects through the specification of an adaptation budget.

As with MACCs, two types of analysis are utilised for the development of MAdCCs. The
first approach is a top-down analysis. This type of analysis usually exploits various
macroeconomic general equilibrium models for the assessment of effectiveness, or the
triggered impacts of a specific technology or measure by the estimation of an overall cost to
the entire economy. Besides economy-wide analysis, some models offer the possibility for
analysis in specific economic sectors. In contrast, bottom-up analysis focuses on the
implementation of specific technology models, which can estimate the effectiveness or the
impacts and costs for individual technologies or measures. The main differences between the
two types of analysis can be summarised by the fact that a bottom-up approach is more
detailed and can lead to the accurate calculation of the provoked variability for both of the
components of effectiveness and cost for the case of specific technologies, while top-down
analysis is identical to identifying, first, the variety of effective technologies or measures
and determining, second, the total implementation cost in the economy or in a specific
economic sector (MacLeod et al., 2010; Moran et al., 2010).

Another categorisation of MACCs is between expert-based and model-derived curves. More
specifically, expert-based MACCs assess the cost and the resulting effectiveness for each

13



single abatement, adaptation technology, or measure according to expert or bibliographical
data, while the model-derived MACCs are constructed mainly with the results obtained from
top-down or bottom-up approaches (Kesicki, 2010).

A typical expert-based MACC is presented in Figure 5, while a model-derived MACC is
depicted in Figure 6.
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Figure 6: A typical expert-based MACC. Source: Kesicki (2010).

Finally, the necessary actions for the development of a MAdCC are summarised and
presented in the following steps:

1. Specification of the adaptation target.

Identification of a baseline scenario for a specific year in the future.

3. Definition of the examined adaptation technologies or measures, which can
contribute to the effective achievement of the adaptation target.

4. Estimation of the cost-effectiveness ratio of each adaptation technology or measure,
which will be implemented within the specific period. This procedure requires the
quantification of all cost components, the potential effectiveness of each adaptation
technology or measure, and a comparison of the corresponding figures against the
baseline scenario.

5. Ranking of the estimated cost-effectiveness ratio for each adaptation technology or
measure from the lowest to the highest value.

6. Drawing of the MAdCC.
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3.3 Treatment of uncertainty

In practical applications, the costs, as well as the planned effectiveness of an adaptation
measure, can never be known ex ante with certainty. Therefore, the second line of research
within subtask 4.4 refers to the treatment of uncertainty. Uncertainty analysis is a procedure
that allows decision-makers to check and confirm the reliability of the obtained results.
Indisputably, a major obstacle during the implementation of uncertainty analysis is the
accurate identification and quantification of any separate source of uncertainty. The need for
the dexterous manipulation of uncertainties led to the development of a flexible and
sophisticated procedure, which can be utilised with either qualitative or quantitative data.

We present here a range of statistical/economic techniques and concepts (both deterministic
and probabilistic), as candidates to be used within the CLIMSAVE framework. Referring to
uncertainty of the costs and effectiveness of measures, applications of CEA in health
economics bear a considerable similarity to those in climate economics. We describe the
most important analytical approaches to uncertainty below.

3.3.1 The ExternE Approach

We opt here to present in some detail the framework of the ExternE program for the
assessment of environmental externalities developed by Spadaro & Rabl (2007). The authors
have developed an approach establishing lognormal distributions for the determination of
the major factors of uncertainty (with respect to atmospheric modelling and the monetary
valuation of mortality). The lognormal distribution is appropriate for the manipulation of
uncertainty for many environmental impacts, as highlighted by the ExternE program,
because the total triggered impacts are constituted by various factors and the distributions of
these factors are similar to a lognormal distribution.

The estimation of damage costs in the ExternE program is performed with the
implementation of the “Uniform World Model” (UWM). More specifically, the UWM
model calculates the total damage costs taking into consideration the contribution of various
factors and specifies the necessary sums and products for each separately. Therefore, if the
total damage cost is the sum of the various factors as depicted in the following equation:

y=x tx, oty

then the estimates of mean value and standard deviation of the total damage cost can be
provided by the following equations:

n} :n11+n12+"'+n1n

2 _ 2 2 2
sy _sxl +sx2 +"'+sxn

Correspondingly, if the total damage cost (z) is the product of various factors, the geometric
mean value and the geometric standard deviation of the total damage cost can be calculated
with the following equations:
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Spadaro & Rabl (2007) have proposed this approach based on lognormal distributions
because the environmental damage costs are the product of various factors, and the
lognormal distributions seem appropriate for their effective depiction. So, the estimation of
geometric mean and geometric standard deviations can lead to the specification of the
intervals where the results fluctuate, evaluating at the same time their robustness and
reliability.

In the case that the geometric mean and the geometric standard deviation values are equal to
g and ogy correspondingly, there is a 68% probability that the true value will lie within the

interval:
Hy
? Jux 'O-g
Oy

or a 95% probability that the true value lies within the following interval:

M, ,
}12 El llrr .UU'

& &
g

The comparison of the results obtained with the derived results of Monte Carlo analysis led
to the conclusion that the lognormal distribution approach provides reliable estimates, while
the procedure for the implementation of this approach is relatively simple. Finally, the ratio
of the mean, p, and geometric mean, g, can be calculated using the following equation:

plp, = exp[O,S-(an'g)z}

The combination of the mean values (1) derived by the basic analysis and the geometric
standard deviations (og) can lead to the calculation of the fluctuation range. The typical
geometric standard deviation estimates that were adopted within the framework of the
ExternE program are presented in Table 2.
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Table 2: The geometric standard deviation estimates (64) used for the assessment of uncertainty in the ExternE program.

Impact Category Changes in the quality of air Dose-response functions
Emission : : Monetary Total
Pata | pispersion | cor S | Emesons | Rk | Todsity | youu | Valuation

Building material 1.2 1.7 1.2 1.05 1.5 2 1 1.2 2.8
Crops (Acid deposition) 1.2 1.7 1.2 1.05 15 2 1 1.2 2.8
Crops (N deposition) 1.2 1.7 1.4 1.15 1.5 2 1 1.2 2.9
Crops (O3) 1.2 1.7 1.4 1.15 15 2 1 1.2 2.9
Crops (SO,) 1.2 1.7 1 1 15 1.5 1 1.2 2.1
Morbidity (PMyo) 1.2 15 1 1 15 15 1 2 2.7
Mortality (PMq) 1.2 15 1 1 15 15 1.3 2 2.8
Morbidity (Nitrates) 1.2 1.7 14 1.15 1.5 2 1 2 35
Mortality (Nitrates) 1.2 1.7 14 1.15 1.5 2 1.3 2 3.6
Morbidity (O3) 1.2 1.7 1.4 1.15 15 2 1 2 35
Mortality (Os) 1.2 1.7 1.4 1.15 15 2 1.3 2 3.6
Morbidity (SO,) 1.2 1.7 1 1 15 1.5 1 2 2.7
Mortality (SO,) 1.2 1.7 1 1 15 15 1.3 2 2.8
Morbidity (Sulphates) 1.2 1.7 1.2 1.05 15 2 1 2 3.4
Mortality (Sulphates) 1.2 1.7 1.2 1.05 1.5 2 1.3 2 35
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3.3.2 Techniques for uncertainty analysis

Various techniques for the implementation of sensitivity analysis have been suggested. A
brief description of these techniques follows:

Simple variation sensitivity analysis

The simple sensitivity analysis is considered as the most utilised form of uncertainty
analysis. This method is based on the evaluation of the variance of one or more uncertain
parameters within a specific range. A distinction of the performed methods can be
categorised between one-way and multi-way sensitivity analysis. In one-way analysis, the
uncertainty range of each component is examined separately, while the other uncertain
parameters remain stable in order to identify the influence of each parameter on the results.
Correspondingly, in multi-way analysis two or more parameters of uncertainty are varied
simultaneously and the effects on results are examined (Briggs et al., 1994).

Threshold analysis

Threshold analysis is used for the detection of the critical value of the uncertain parameters.
This method aims to identify the lower and upper levels of fluctuation for critical values,
where the main results derived by the base case analysis differentiate (Briggs et al., 1994).

Analysis of extremes

The analysis of extremes involves the implementation of additional analyses taking into
account the extreme estimates of the uncertain parameters and the comparison of the results
obtained using these extremes with the outcome of the base case analysis (Briggs et al.,
1994).

Probabilistic sensitivity analysis

Probabilistic sensitivity analysis is a methodological approach which assigns ranges and
distributions to uncertain parameters and evaluates the fluctuation of the results. The main
methods that are utilised extensively are Monte Carlo simulation and Bootstrapping analysis
(Briggs et al., 1994; Baltussen et al., 2004). More specifically, Monte Carlo simulation
selects values randomly and simultaneously from the already specified probability density
functions for each examined uncertain parameter and predicts the results for a large number
of iterations. The IPCC (2000) utilised Monte Carlo simulation in order to check the
robustness of the estimates of emissions and emission trends over time within the framework
of the management of uncertainty in National Greenhouse Gas Inventories. Otto & Loschel
(2008) studied the technological uncertainty and cost-effectiveness of CO, emission trading
schemes with Monte Carlo simulation. Finally, Monte Carlo calculation was performed
within the framework of the ExternE program for the estimation of the external costs of
energy, taking into account uncertainties in the numerous input data (European Commission,
2005). Because of its importance, we give below a detailed presentation of Monte Carlo
simulation techniques.

Monte Carlo simulation

Monte Carlo simulation is considered one of the most efficient methods for uncertainty
analysis. This technique involves the random sampling of values based on an appropriate
probability distribution for each uncertain input parameter used in the calculation procedure
producing hundreds or even thousands of scenarios (iterations). A crucial step is clarifying
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the number of input parameters which it is important to analyse, and the estimation
procedure, which will lead to the set of outputs. For the purposes of CLIMSAVE, the
components of cost and effectiveness constitute the input parameters, and the obtained cost-
effectiveness ratio, the output of our uncertainty analysis.

Therefore, Monte Carlo simulation evaluates iteratively the specified output using sets of
random numbers as inputs. The main difficulties associated with this method are: (a) the
determination of the proper probability distribution in order to depict the uncertainty effects
realistically for each input parameter; and (b) the large number of uncertain parameters. The
necessary steps for effective implementation of Monte Carlo simulation are listed below:

1. Identification of input and output parameters.

2. Generation of a set of random values for all input parameters from a probability
distribution for a specified number of iterations (e.g. 1000).

3. Assessment of the results obtained for the output parameters.

Reiteration of the procedure utilising different assumptions regarding the input
parameters.

5. Analysis of the results using appropriate histograms and summary statistics, such as
mean or median value, variance, etc.

The following four distributions are considered within the CLIMSAVE framework as the
more representative types of distributions for adaptation measures: uniform, normal,
lognormal and triangular.

The selection of these types of distribution is performed taking into consideration factors
such as the simplicity of the implementation, the number of successful applications with the
utilisation of these distributions in similar case studies, and the capability of providing all
the necessary data efficiently. The basic statistics and parameters for the selected
distributions are presented in Tables 3 and 4.

Bootstrap simulation

Bootstrap sampling is a computational method of drawing a series of samples from existing
estimates of results exploiting the variation of the uncertain parameters. More specifically,
bootstrapping analysis attempts to determine the probability distribution from obtained data,
through the creation of an artificial list of data drawing elements randomly from the initial
list of data. Some elements may be picked more than once and in this case the method
attempts to identify the distribution of the newly created lists for a large number of
iterations. Several studies have utilised bootstrapping analysis in order to effectively handle
uncertainty. Specifically, Khalifa et al. (2009) examined the uncertainty of waves in the
Egyptian Northern Coast; Mennemeyer & Cyr (1997) studied the uncertainty of health
treatments; and Fogarty et al. (1996) assessed the risk in exploited marine populations.
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Table 3: Statistics of the selected Monte Carlo distributions.

Uniform Normal Lognormal Triangular
1 o’ a+b+c
Mean —(a+b HA—
2 ) a e 2 3
| a+\/(b—f;32;(c—a) C>a-2|-b
Median —-(a+b) M e
2 b_\/(b—a)o(b—c) L ath
V2 T2
Mode any value in [a,b] m el c
0 x<a
2(x —
(x a) a<x=<c
1 (b-a)(c-a)
PI’Obablllty xe I:a,b] l _{x_ﬂj)_ 1 (In x—p) 2
distribution | Yy b—a = 20° o 207 Y=c
function 0  otherwise 2n0° x\ 270’ b—a
2 (b - x)
c<x=<b
(b — a) (b — c)
0 b<x
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Uniform Normal Lognormal Triangular
0 x<a
(x—a)’
—_— a<x=c
0 x<a (h—a){c—a)
Cumulative
xX—a 1 X — 1 1 Inx — c—d
distribution xe[a,b] 5-{I+erf[ ‘Ljﬂ 5+5-{1+e}f( Z’UH x=c
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] x>h h—x)
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ﬁ(a+b—2c’)(2a—b—c)(a—2b+c)
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Table 4: Parameters for each selected type of distribution.

Distribution Value of each input parameter
) Minimum (a)
Uniform -
Maximum (b)
Mean (p)
Normal

Standard deviation (o)

Geometric mean ()

Lognormal
Geometric standard deviation (o)
Minimum (a)

Triangular Mean (b)
Maximum (c)

Finally, in the case that the probability density functions and the standard deviation (or
confidence limits) of the uncertain parameters are known, it is feasible to calculate directly
the range of the obtained results. IPCC (2000) described how to identify and combine
uncertainty using the shape of the probability density function of emissions factors and
activity data during the assessment of uncertainty in National Greenhouse Gas Inventories.
In the case that no data are available, the probability density function can be estimated
empirically or through expert judgment. Furthermore, the approach of determining the
probability density functions was introduced in the ExternE program examining the
uncertainty of various components, such as atmospheric models, dose-response functions
and monetary valuation (European Commission, 2005).

Fuzzy sets

The variability of several factors involved in the calculation of the cost-effectiveness
indicators can be estimated using fuzzy set theory (Diakoulaki et al., 2006). Fuzzy set theory
is a widespread tool in decision analysis, which is used in order to solve problems
characterised by uncertain parameters. A fuzzy set contains objects characterised by a grade
of membership defined usually within the interval [0,1]. Therefore, a fuzzy set A is denoted
by attributing a membership function pa(X) to each element, x, in X:

A= {(x,,uA(x));x € X}

In the case that the membership degree for an object x equals one, this object belongs
definitely to fuzzy set A. Membership degrees equal to zero indicate that the object x is
definitely not included in the set, whereas numbers between zero and one are assigned to
objects indicating an intermediate situation.

Fuzzy numbers represent uncertain numerical quantities. A fuzzy number A is a fuzzy set
containing objects X, which are real numbers. In this case the membership function pa(X)
denotes the degree of truth that A takes a value equal to a specific real number, x. Triangular
Fuzzy Numbers (TFNs) are extensively used to handle uncertainties effectively and can be
graphically depicted as in Figure 7.
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Figure 7: Membership function of a Triangular Function Number A = (a;, a,, a3).

TFNSs are defined by a triplet of real numbers (aj, a2, a3) and a membership function pA(x)
can be estimated by the following set of equations:

0 X<a,
a,<x=<a,
%a2_al
a3_x
a, < x < a,
0 X = d,

These equations lead to the conclusion that the real number a; is assigned the membership
degree one representing the best possible value of the uncertain data under consideration.
Alternatively, a; and a3 correspond to the lower and upper bounds of the set, meaning that
values outside these borders do not belong to the fuzzy number A.

Based on the extension principle, the concepts of classical algebra are transformed to fuzzy
mathematics. Assuming that A = (ai, az, az) and B = (b, by, bs) are two TFNs and k is a crisp
number, the following operations can be defined:

f(a],az,a3)+(b,,b2,b3):(a, +b,.a, +b,,a, +b3)
(a],az,a3)—(b,,b2,b3):(a, —b3,az—b2,a3—b,)
k®(a],a;,,a;;):(k-a],k-az,/c-aS) if k>0
k®(a],az,a3):(k-a3,k-az,k-a]) it k<0
(a],az,a3)x(b,,bz,b3)=(a, -b,.a, -b,,a, 'b_g) if A>~0,B>0
(a],az,a3)x(b,,bz,b3):(a, -b,,a,-b,,a; -b,) ift A<0,B>=0
(a,.a,.a;)<(b,.b,.by)=(as-b;,a, -b,,a,-b) if A<0,B=<0
(a],az,a3)+(b,,bz,b3):(a, /'by.a, ! b,,a, /b,) if A>~0,B>=0
(a],az,a3)+(b,,b2,b3):(a3 /'by,a,/b,,a, /b,) it A<0,B>=0
\(a],az,a3)+(b,,b2,b3)=(ag /b ,a, /' b,,a, /b3) if A<0,B<0

P
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TFNs have the disadvantage that they cannot be easily compared to each other because
fuzzy numbers do not provide a totally ordered set as is the case with numbers. It is very
difficult to distinguish the best possible course of action among a set of alternatives defined
by means of TFNs. The comparison among TFNs can be achieved by using one of the two
following categories of fuzzy ranking techniques. The first category exploits the inequality
relations between fuzzy numbers and provides partial or complete pre-orders. These pre-
orders offer very useful information since they allow incomparability between alternatives to
be identified. A first definition of fuzzy inequality was given by Zadeh (1965) which states
that given two fuzzy numbers A and B examined with respect to a degree of membership a
(a-cut), then:

A<B if supA4,<supB,

In other words, Zadeh’s definition of the inequality relation between fuzzy numbers declares
that in order to conclude that A is smaller than B, the greatest possible value of A must be
smaller than the smallest possible value of B for a degree of membership a or higher.
Another concept of fuzzy inequality was proposed by Ramik & Rimanek (1985) and states:

A<B if supA, <supB, and int 4, <inf B,

This definition declares that the fuzzy number B is considered as greater compared to fuzzy
number A for a degree of membership a (cutting level a) or higher, if the greatest possible
value of A is smaller than the greatest possible value of B and the smallest possible value of
A is smaller than the smallest possible value of B. This definition is not too strict and does
not result in too much incomparability.

An alternative approach to ranking TFNs is to calculate for each TFN an ordinary
representative value. This is a crisp number which differs from the already defined best
estimate, a,, since it takes into account the degree of truth associated with each specific real
value within the support set [a;, az]. This technique directly provides a complete pre-order of
the examined alternatives assigned with numerical values which are generally easier for
decision-makers to use. One technique that can be used is the modification of Yager’s index
proposed by Kaufman & Gupta (1988). This technique takes into consideration both the
mean and the spread of the corresponding TFN, while attributing a higher weight to the
mean value, a,:

_a,+2a, +a,

4

A

The proposed approach for fuzzy sets includes the identification of all uncertain parameters
involved in the analysis and the expression of these, or the most important ones, as TFNSs. In
the case that some of the parameters are TFNSs, calculations must be performed using the
algebraic operations listed in the previous subsection. Therefore, the cost-effectiveness ratio
estimates, which will be calculated for each adaptation measure, will finally be obtained in
the form of a TFN: (a1, az, a3). The variable a; is attributed to the best estimation of the cost-
effectiveness value, while the variables a; and as determine the lower and upper limits,
respectively.

The comparative evaluation of the examined technologies can be achieved by applying a
fuzzy ranking technique. It is possible either to ‘de-fuzzify’ cost-effectiveness estimates by
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calculating an ordinary representative value for each TFN according to equations, or to use
one of the definitions of fuzzy inequalities. In the first case the obtained representative value
is a crisp number and allows for directly establishing a complete pre-order of the examined
alternatives. On the contrary, in the case of using fuzzy inequalities the ranking is conducted
via the pairwise comparison of all examined alternatives. Alternative A is ranked higher
than alternative B, if the result of this comparison confirms the selected definition of fuzzy
inequality. This procedure is very likely to lead to partial pre-order illustrating
incomparability between the examined adaptation measures. In order to reduce
incomparability, one has to reduce the confidence interval (increase the a-cut). For a degree
of membership equal to 1 the comparison refers to the mean values a; of the corresponding
TFNs and the obtained pre-order is always complete.

Bayesian learning

The Bayesian learning method is a method for the identification of the best hypothesis, h,
taking into consideration the evidence of the observed data, D. The Bayesian learning
method is based on Bayes’ rule, which can lead to the calculation of probabilities derived
from existing evidence, knowledge or expertise. The estimation of this type of probability
can be derived by the following equation:

P(D/h)- P(h)

P(h/ B) = 0

where,
P(h) is the prior probability of hypothesis h,
P(D) is the prior probability of data D,
P(h/D) is the probability of h given D,
P(D/h) is the probability of D given h.

4. The analytical structure of the CEA in CLIMSAVE
4.1 Assumptions of the CEA algorithm

The development of the CEA algorithm was performed taking into consideration all relevant
issues discussed in Section 3. Specifically, the cost-effectiveness evaluation of the examined
adaptation measures is based on the ranking of their unitary cost estimates. The unitary cost
estimates depict the required cost for the implementation of each adaptation measure in
order to achieve any level of effectiveness. For example, the cost estimates of adaptation
measures for the protection of shoreline, expressed in €/km of shoreline, present the
necessary cost for the protection of 1 km length of shoreline.

During the development of the proposed CEA methodology, the potential (i.e. the extent to
which a measure can address an adaptation issue) for the implementation of each examined
adaptation measures could not be taken into consideration. The reason for this being that the
quantification of the potential for the penetration of each adaptation measure is a very
difficult task, especially in the case of a large number of adaptation measures in various
sectors. Furthermore, few studies have assessed the potential of adaptation measures on a
European scale, because it is a complex and difficult procedure.
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Therefore, the implementation of the CEA algorithm within the framework of CLIMSAVE
focuses only on the ranking of the unitary cost estimates for the examined adaptation
measures ignoring the degree of implementation for each adaptation measure. As a result,
we assume during the calculation that each measure can be implemented infinitely having
the specific unitary estimate as the cost.

4.2 Adaptation cost database

Taking into account the defined assumptions, the main prerequisite for the implementation
of the CEA algorithm is costing information for the examined adaptation measures.
Nevertheless, no previous attempt has been made to collect cost estimates for various
adaptation measures in different sectors. Identifying this gap, a database was developed
within the framework of CLIMSAVE. Specifically, an in-depth bibliographical review was
performed collecting the available unitary cost estimates from the implementation of various
adaptation measures. A large number of studies have been assessed in order to identify those
studies with the highest rate of reliability. The main aim of this procedure was the collection
of unitary cost estimates. Therefore, studies, which refer only to the total cost of adaptation
measures without additional information regarding the degree of the implementation, were
excluded from the database.

The developed database contains unitary cost estimates for adaptation measures which can
be implemented in the six CLIMSAVE sectors: forestry, biodiversity, water, coasts,
agriculture and the urban environment.

The database has the following main fields for information:

the type of the adaptation measure,

the year of the intervention,

the country of the intervention,

the mentioned or estimated unitary cost estimates, and
the corresponding reference.

Representative images from the database are presented in Appendix A. These images show
the introductory page of the database, the page with the indicative unitary cost estimates of
adaptation measures for the protection of coastal areas and the page with the references.

Finally, the 1AP includes various soft adaptation measures in addition to hard ‘engineering'
measures. The quantification of cost estimates for these measures is very difficult and few
studies have attempted to calculate the unitary cost estimates for these measures. Hence, an
expert judgement approach was used to qualitatively estimate the unitary cost estimates of
soft adaptation measures into five categories (very high, high, medium, low and neglible;
see Deliverable D2.4).
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4.3 Adaptation cost estimates

The adaptation measures, whose cost estimates were identified and recorded in the database,
were assessed and the most representative of them were selected for use with the CEA
algorithm. These unitary cost estimates refer exclusively to capital costs, which are
necessary for the development and implementation of these adaptation measures. Table 5
presents the selected adaptation measures including their minimum, mean and maximum
unitary cost estimates. All values have been expressed in €2010 for the EU-27.

For the estimation of more representative cost estimates, an adjustment of the selected cost
data was performed in relation with the Purchasing Power Parity Index (PPPI) and the
Consumer Price Index (CPI) (Pattanayak et al., 2002). The PPPI Index is preferred over
simple currency conversion, as it takes into consideration both the currency exchange rate
and the prices of goods from one country to another. Simple currency conversion can
underestimate or overestimate the value as the rates of exchange depends on various factors,
such as each country's interest rates, financial flows, supply and demand of currency, etc.
Subsequently, the utilisation of the Consumer Price Index (CPI) takes into account the effect
of inflationary trends during the calculation.

The equation used for the transposition of individual cost estimates from the original country
level to the average EU-27 level with 2010 as the baseline year is as follows:

PPPI
Country-Year ~ ( PPP|

EU 27-Year ) . ( IC:I:)EU 2772010)

COStEU 27-2010 — Cost
ICF)EU 27-Year

Country-Year

4.4 Assessment of cross-sectoral effects

A major aim of the CLIMSAVE project is the assessment of cross-sectoral effects from the
implementation of adaptation measures. First, a detailed literature review was performed for
the qualitative estimation of cross-sectroral effects and second, the expert judgment
elicitation approach was applied for the quantitative evaluation of the cross-sectroral effects.
The implementation of this method was performed through the development of the
CrossAdapt tool and the corresponding methodology.

Representative images of this tool are presented in Appendix B. These images show the
introductory page of the tool, the procedure for the quantification of cross-sectoral effects
for an indicative adaptation measure (wetland creation) and the questions assisting the
potential user to express her opinion regarding the cross-sectoral effects of the examined
adaptation measure. A brief description of CrossAdapt tool is presented in the following
section.
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Table 5: Cost estimates for the selected adaptation measures grouped according to the adaptation sliders on the 1AP.

Flood protection upgrade Unit Minimum Mean Maximum
Beach nourishment €/m 87 1,562 3,460
Breakwaters €/m 173 3,461 16,407
Bulkheads €/m 307 611 6,563
Closure dams €/m 5,204 15,611 26,019
Concrete floodwall €/m 3,296 3,916 4,639
Dike or levee €/m 569 8,070 22,267
Dune restoration & stabilisation €/m 3 145 788
Gabions €/m 87 476 865
Geotextiles €/m 35 104 173
Groynes €/m 166 3,935 10,302
Protected embankment €/m 4,304 5,380 6,456
Revetments €/m 320 2,068 5,190
Storm surge barriers €/m 6,071 1,609,076 5,129,534
Seawalls €/m 300 7,704 16,407
Beach drainage €/m 121 302 483
Retreat of flood defences Unit Minimum Mean Maximum
Managed realignment €/m 1,092 1,226 1,361
Coastal wetland vegetation cover & restoration €/m 3 24 55
Marshland creation €/m? 3 12 26
Marshland stabilization €/m? 0.1 1 2
Coastal wetland vegetation cover & restoration €/m? 0.3 0.3 0.4
Saltmarsh restoration and creation €/m? 0.02 1 13
Wetland restoration and creation €/m? 0.02 19 94
Implement flood resilience measures Unit Minimum Mean Maximum
Automatic barriers €/m? 204 331 458
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Raised thresholds €/m? 31 34 38
Storm porch €/m? 140 146 153
External wall render and facing €/m? 25 38 51
Airbrick elevation €/m? 64 70 76
Integral automatic airbrick €/m? 36 38 41
External doors €/m? 19 41 64
Replacement concrete floor & finishes €/m? 140 153 166
Internal wall render & skirting €/m? 51 76 102
Internal doors €/m? 8 10 12
Raised services €/m? 8 17 25
- - 2
B ol vl e,
Change in protected area forest Unit Minimum Mean Maximum
Assuring species habitat in a forest €/ha 123 125 127
New tree plantation €/ha 292 1,294 2,844
Expanding protected areas €/ha 5 1,022 3,191
Management costs of Natura 2000 network €/ha/yr 57 77 96
Management costs of protected areas €/ha/yr 3 51 272
Change in protected area agriculture Unit Minimum Mean Maximum
ggr?:er:;j/i;léza e?dnaliiec;c;iversity conservation - More €/halyr 79 99 119
Habitat protection and restoration €/ha 1,096 4,620 8,102
Lowland grassland creation and restoration €/ha 3,198 7,969 12,942
Expanding protected areas €/ha 5 1,022 3,191
Management costs of Natura 2000 network €/ha 57 77 96
Management costs of protected areas €/ha 3 51 272
Peatlands restoration €/ha 274 475 675
Restoration of blanket bog €/ha 274 4,057 8,162
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Set-aside Unit Minimum Mean Maximum
(ei):)tr;\r:(;ir\t/;agg;g arable or intensive grass to €/ha 794 904 1,085
Extensification grasslands €/ha 185 302 419
New tree plantation €/ha 292 1,294 2,844
Lowland grassland creation and restoration €/ha 3,198 7,969 12,942
aR;rc:gl(j:?L?re diffuse source pollution from Unit Minimum Mean Maximum
Controlled release fertilisers €/ha/yr 31 82 148
Fertiliser recommendations €/ha 4 4 5
Fertiliser spreader calibration €/ha 13 17 20
Fertilizer reduction €/halyr 17 22 26
;?glrig;te}céélmmg of mineral fertiliser N €/halyr 18 29 26
;?glrig;te}céélmmg of slurry and poultry manure €/halyr 8 10 12
Manure management plans & waste audits €/ha 9 11 13
Mulching €/ha 76 111 145
N efficiency calculation €/ha 2 2 3
Nitrification inhibitors €/ha/yr 31 54 78
Precision farming (rain-fed) €/ha 7 130 462
Reduce N fertiliser €/ha/yr 42 53 63
Use of on-farm N-efficiency €/ha/yr 6 8 9
Change Forest Management Unit Minimum Mean Maximum
Agricultural and forestry land management €/ha 119 149 179
Annual maintenance of forests €/ha/yr 97 121 145
Fire suppression €/ha 0.2 3 6
Forest rehabilitation €/ha 363 2,950 9,298
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Plant climate-resilient tree species Unit Minimum Mean Maximum
Afforestation €/ha 254 923 2,540
Reforestation €/ha 890 1,857 5,128
Plantation of drought tolerant species €/ha 23 203 431
Plantation of productive species €/ha 108 135 162
Woodland creation €/ha 1,347 4,206 9,259
Change in bioenergy production Unit Minimum Mean Maximum
Agroforestry €/ha 272 895 1,557
Biodiesel €/ha 260 477 694
Water savings due to technological change Unit Minimum Mean Maximum
Aquifer recharge €/m® 0.03 0.44 0.74
Dams and reservoir €/m® 0.02 0.08 0.23
Desalination sea water thermal €/m® 0.12 1.58 7.25
Desalination sea water reverse osmosis €/m® 0.29 1.51 12.09
Desalination brackish water €/m? 0.15 1.22 8.32
Desalination brackish water reverse 0smosis €/m® 0.09 1.39 8.32
Rainwater harvesting €/m® 0.03 0.46 2.25
Recycling €/m® 0.03 0.45 1.24
Wastewater reuse €/m® 0.03 0.17 0.31
\r/;/r?giri"stzﬁglny systems creation, connection and €/md 001 0.06 0.16
Change in agricultural yields Unit Minimum Mean Maximum
Agricultural Intensification €/ha 199 343 487
Agroforestry €/ha 272 895 1,557
Conservation tillage - minimum tillage €/ha/yr 88 123 145
Conservation tillage - no tillage €/ha 83 152 246
Controlled release fertilisers €/halyr 31 82 148
Cover crops €/ha 43 118 292
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Drainage construction (rain-fed) €/ha 37 46 55
Extensification grasslands €/ha 185 302 419
Fertiliser recommendations €/ha 4 4 5
Fertilizer reduction €/halyr 17 22 26
Genetic crop development (rain-fed) €/ha 10 16 22
Improved germplasm (rain-fed) €/ha 4 5 6
;r:glzgzzg;iming of mineral fertiliser N €/halyr 18 29 2%
;rgglriggg r:iming of slurry and poultry manure €/halyr 8 10 12
Integrated plant stress management (rain-fed) €/ha 6 42 77
Legume - biological nitrogen fixation €/ha 3 3 4
Legume - fertilizer N use €/ha 62 79 96
N efficiency calculation €/ha 2 2 3
Nitrification inhibitors €/halyr 31 54 78
Precision farming (rain-fed) €/ha 7 130 462
Reduce N fertiliser €/halyr 42 53 63
Use of on-farm N-efficiency €/ha/yr 6 8 9
Yield map production €/ha 15 21 27
Change in agricultural mechanisation Unit Minimum Mean Maximum
Agricultural Intensification €/ha 199 343 487
Conservation tillage - minimum tillage €/ha/yr 724 904 1,085
Conservation tillage - no tillage €/ha 83 152 246
Precision farming (rain-fed) €/ha 7 130 462
Yield map production €/ha 15 21 27
Change in irrigation efficiency Unit Minimum Mean Maximum

Irrigation systems-rehabilitation €/ha 1,109 3,767 9,057
Drainage construction (irrigated) €/ha 10 16 22
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Genetic crop development (irrigated) €/ha 5 22 38
Improved germplasm (irrigated) €/ha 6 42 77
Integrated plant stress management (irrigated) €/ha 238 350 462
Precision farming (irrigated) €/ha 111 270 462
Sprinkler irrigation €/ha 154 1,801 3,373
Irrigation scheduling €/ha 15 38 62
Piped water conveyance €/ha 390 527 769
Drip irrigation €/ha 769 2,755 5,501
Sprinkler conversion to microsprayer €/ha 389 2,589 4,345
Canallining €/ha 208 296 385
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4.4.1 The CrossAdapt tool

Introduction

The purpose of the CrossAdapt weighting scheme is to identify and quantify cross-sectoral
effects of adaptation measures. It attempts to answer the following questions: (1) Do sector-
specific adaptation investments generate (positive or negative) auxiliary effects on
(neighbouring) sectors? and (2) if yes, how can we then identify and quantify them? This is
an important question for the accuracy of adaptation costing and, therefore, for the design of
realistic adaptation plans. To our knowledge, the cross-sectoral impacts of adaptation
measures are rarely taken into consideration. We therefore need to rely on expert judgement
in order to accomplish this task.

Our approach is simple: we assume a direct relationship between the effectiveness of an
adaptation measure in a specific sector and its auxiliary effects in other sectors. For
example, a seawall designed to protect the coastline also protects fisheries to a degree that
varies between 0% and 100%. CrossAdapt contains our idea of how to operationalise the
above approach: it aims at eliciting expert judgement on the central, minimum and
maximum value of intensity of cross-sectoral effects in specific sectors of interest.

Each file addresses a specific sector and each worksheet within a file refers to a specific
adaptation measure for this sector. For each adaptation measure (e.g. wetland creation) the
possible cross-sectoral effects are given (e.g. on biodiversity, agriculture and water). For
each cross-sectoral effect - by moving the cursor to the right side of the relevant box (see
Appendix B) — an expert is asked to state their judgement on five topics:

Type of impact [positive or negative],
Intensity - Central value [0% to 100%],
Intensity - Minimum value: [0% to 100%],
Intensity - Maximum value: [0% to 100%],
Degree of certainty: [very low to very high].

For the completion of CrossAdapt it is important to note the following points:

1. Delimitation of sectors: The sectors of interest are those defined within the
CLIMSAVE Integrated Assessment Platform: coasts, biodiversity, agriculture, water,
forests and urban. The water sector includes adaptation measures for water quantity
and quality problems in addition to flooding.

2. Selection of measures: We constrain ourselves to adaptation measures and their
cross-sectoral effects that have been identified in the corresponding Adaptation and
Mitigation Review (Task 4.3; Deliverable D4.2).

3. Scale and size of intervention: The scale of intervention is important for judging the
importance of effects. For example, transforming 1000 ha of agricultural land to
wetlands might have an important effect at a local, but not at a national scale.
CrossAdapt assumes an ‘average’ adaptation intervention at the local scale.
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4. Intensity: Intensity denotes the importance of cross-sectoral effects expressed as
percentage change in the state of the sector affected. Intensity is the central pillar in
the construction of CrossAdapt. Intensity is expressed as a mean (e.g. the most
probable intensity), a minimum and a maximum value. We acknowledge that
‘effects’ are mostly location specific; and consequently ‘intensity’ is also location
specific. Nevertheless, we cannot control for this parameter unless we make the
weighting scheme very complicated.

Elicitation process

Following Morgan et al. (2006), a structured elicitation of each expert’s judgment was
selected provided that neither consensus nor a mechanism for iterative communication
between experts was required. This approach also ensured that the expert judgments
provided were free of interactions, since the reactions of other experts present in interactive
groups can provoke the so-called ‘social pressure’ bias (Meyer & Booker, 2001).

The process targets the effective elicitation of the type of cross-sectoral effect (binary
response, i.e. positive or negative) and estimates of the intensity of effects in specific
sectors. Furthermore, in order to tackle features of uncertainty that may not be captured in
probability theory (Hall et al., 2007), the experts’ subjective probability distributions for the
intensity of cross-sectoral effects were provided in the form of fuzzy numbers based on
fuzzy set theory (Zadeh, 1965; 1987).

A fuzzy number is defined in the universe R as a convex and normalized fuzzy set. In this
particular case, the experts were asked to provide their estimates determining the minimum
[0% to 100%], the central (i.e. most plausible) [0% to 100%] and the maximum [0% to
100%] value in the form of a triangular fuzzy number T = (a, b, c) with membership
function p4(x), defined on R as follows:

x-af la<x<b
T= X—%_C b<x<c
0 otherwise

where [a,c] is the supporting interval and the point (b,1) is the peak (Figure 8).

nx) A
1

a b c X
Figure 8: Membership function g of the triangular fuzzy number.
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Evaluating and weighting the existing level of information

In order to evaluate uncertainty and ambiguity associated with the current level of scientific
knowledge so as to weight the final estimates if required, two different measures were
adopted. The first one is based on an ‘objective’ measure, namely the relative agreement
degree (RAD) between the experts, whereas the second relies on the self-evaluation of
experts, who express their degree of certainty using a five-point Likert scale (from “very
low” to “very high”). The approaches used are described below.

‘Objective’ weighting of uncertainty

The agreement between the experts was measured by means of the relative agreement
degree index, which is usually estimated in order to combine individual subjective estimates
in the context of the similarity aggregation method (Hsu & Chen, 1996). Each Expert Ei
provides a triangular fuzzy number Ri with membership function uz (). Suppose two
experts Ei and Ej have their estimates Ri and Rj. If there is an agreement between these two
experts there is a consistent area between expert i and expert j, i.e.:

[, min {yug, (), g, () | .

The agreement degree S(RIi, Rj) between the two experts is estimated by the proportion of
the consistent area to the total area, as follows (Hsu & Chen, 1996):

_ fx min {.U}ii(x), ,uﬁj(x)} dx
fx max {.U}ii(x), ’uﬁj (x)} dx

S(R, R;)

The higher the percentage of overlap, the higher the agreement degree. If two experts have
the same estimates, then S(Ri,Rj) = 1, and if two experts have completely different
estimates, then S(Ri, Rj) = 0. After all the agreement degrees between the experts Ei have
been measured, an agreement matrix (AM) is constructed, which provides insight into the
agreement between the experts (ibid.):

[ 1 512 511 Sln]
AM = !Sil SiZ SU Sin!
[+ : E
R R

where Sj; = S(Ri, Rj), for i #j and Sjj = 1, for i = .

The average agreement degree of expert Ei is estimated by:

n

1
A(Ey) = mz: Sij
=
Jj#i
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Finally, the relative agreement degree (RAD) of expert Ei, which can also be used as a
weighting factor for the aggregation of experts’ opinions, is given by:

A(Ey)
RAD(E) =5

‘Subjective’ weighting of uncertainty

As mentioned, the second approach uses the subjective opinion of the experts involved in
the survey. More specifically, expert E; expresses her/his certainty as to the accuracy of
her/his estimate in linguistic form, using a five-point Likert scale, namely: “Very low”,
“Low”, “Medium”, “High” and “Very high” certainty.

In order to determine the ‘certainty’ relative weight of expert E;, Saaty’s pair-wise
comparison approach is implemented (Saaty, 1977). Linguistic pair-wise comparisons of
certainty values are converted to the numerical pair-wise comparisons presented in Table 6,
by means of the given scale represented in Table 7.

Table 6: Pair-wise comparisons of certainty intensity values.

Very low | Low Medium High Very high
Very low 1 0.333 0.200 0.143 0.111
Low 3 1 0.333 0.200 0.143
Medium 5 3 1 0.333 0.200
High 7 5 3 1 0.333
Very high 9 7 5 3 1

Table 7: The scale of the certainty intensity value.

Certainty intensity e; Definition
1 Equal importance of i and j
3 Weak importance of i over j
5 Strong importance of i over j
7 Demonstrated importance of i over j
9 Absolute importance of i over j

The matrix of pair-wise comparisons E = [e;] that represents the intensities of experts’
certainty preference between individual pairs of experts (E; versus E;, forall i, j=1,2, ..., n)
is, as follows:

[ 1 e o e v €1n
E— [1/?12 1 e.zj ez.n]
1/e1n 1/ezn . 1/ejp .. 1
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Finally, the normalised relative weight (RW) of expert E; is estimated according to the
following equation:

RWi=ri/(ri+r+...+r)

where r; is the geometric mean of each row, i.e.:
Y
j=1

Aggregation of experts’ distributions and defuzzification

In general, there are three main approaches when faced with differing expert opinions: (i)
propagate each expert’s distribution separately; (ii) require the experts to create a single
consensus distribution; and (iii) combine the expert opinions in some way. Nevertheless,
there is not a consensus on how to deal with this issue in the context of integrated
assessment models (Webster & Sokolov, 2000). Requiring experts to create a commonly
accepted distribution model may be possible in group consensus expert elicitation
approaches or iterative processes, such as the Delphi method. However, it is not appropriate
in individual expert judgments, especially when interactions between the experts could bias
the results. Using each individual expert’s opinion as model inputs and estimating a range of
results from the model also presents important difficulties. As mentioned by Baker & Peng
(2012), it might be possible in theory to run every combination of expert’s results; yet, it is
largely impractical in reality. For instance, if there are n experts per category and m
categories, then a total of n™ probability distributions are created. Furthermore, as quoted in
Webster & Sokolov (2000), Casman et al. (1999) note the practical limitations to the strict
Bayesian approach of specifying all possible hypotheses with axiomatically correct priors in
commenting that “...many Bayesian theorists would advise the analyst to specify the
(perhaps infinite) set of all priors and models which fit the constraints imposed by whatever
limited knowledge one has...a prescription that one’s analytical formulation should grow in
complexity and computational intensity as one knows less and less about the problem, will
not pass the laugh test in real-world policy circles...”.

Bearing in mind the above-mentioned remarks as well as the scope and needs of the tool, the
approach of combining the experts’ opinions was adopted following previous research
efforts (e.g. Titus & Narayanan, 1996; Webster & Sokolov, 2000; Baker & Peng, 2012).
Combining the experts’ opinions into a single distribution of values via mathematical
aggregation can prove a difficult analytical problem, as many of the existing techniques
impose restrictions on the data, the experts, the analyst, and on the interpretations of results
(Meyer & Booker, 2001). Most the aggregation methods to date are based on fuzzy
preference relations (e.g. Kacprzyk et al., 1992; Ishikawa et al., 1993; Hsu & Tsen, 1996;
Lu et al., 2006). The individual fuzzy sets of experts’ opinions are aggregated point by point
into the aggregation function. The individual memberships associated with expert judgments
are then aggregated using operators such as the mean, maximum, minimum, etc., resulting in
an aggregated membership value, which is located in the aggregated function, to finally
determine the expert group final judgment (Vanicek et al., 2009). Nevertheless, typical t-
norm (intersection) and t-conorm (union) operators result in a very restricted representation
of the wide range of experts’ beliefs. Thus, it is inappropriate to combine different
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distributions into one summary distribution if this obscures differences between two or more
experts. These poorly managed limited ranges of outcomes may inadvertently propagate
uncertainty and limit the ability of policy-makers to make strategic hedges against risky
outlier events (Schneider & Kuntz-Duriseti, 2002).

Two alternative approaches were implemented in order to address these concerns, namely
the Fuzzy Averaging approach and the Maximum Entropy approach. The Fuzzy Averaging
technique is widely used in forecasting and decision-making applications of fuzzy logic, as
it provides the supporting interval for which the membership function ,4(x) has maximum
membership degree (Bojadziev & Bojadziev, 2007). The Maximum Entropy approach, on
the other hand, allows for the wider range of “judged” uncertainty elicited by the experts to
be considered and is a common measure of information in modern communications theory
(Baecher & Christian, 2003).

The Fuzzy Averaging approach

Consider n triangular numbers A; = (a,?, an®, a,"), with i = 1, 2,..., n, provided by the
experts. The triangular average Aae = (Mg, my, my) of all A; is estimated, according to the
equation:

L 1 i
Aave = (mla mMa m2) = (_zal()’_zam()’_zaz() )
| ey | By N5z

If the estimates provided by the experts have different importance expressed by the weights
w;, then the weighted triangular average is introduced by the formula

1 R h 1x i .
Agpe = my, my, my'= (ﬁzwial(l)’ﬁzwiam(l)’ﬁZWiaZ(I) ), with wy + Wy + ... + W, =
i=1 i=1 i=1

Following Hsu & Chen (1996), the weight w; of the expert Ej (i =1, 2,..., n) is estimated by
the relative agreement degree (RAD) and the normalised relative weight (RW) of the expert,
as follows:

w; =8 * RAD; + (1 - B) * RW;, with 0 < B <I defined by the analyst

The Maximum Entropy approach

The idea behind Maximum Entropy is to formulate a distribution for the data such that the
distribution maximises the uncertainty in the data subject to known constraints (Meyer &
Booker, 2001). As Gay & Estrada (2010) note, the Maximum Entropy Principle is “...a
useful tool for constructing probabilistic climate change scenarios that are the least biased
estimates possible, consistent with the information at hand (including expert or decision-
maker judgment) and that maximise what is not known”.
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This definition of entropy, introduced by Shannon (1948), resembles a formula for a
thermodynamic notion of entropy. For a continuous probability density function p(x) on an
interval 1, its entropy is defined as:

h@) = - f p(x) Inp(x) dx

I

Using Shannon’s entropy measure, Jaynes (1957) showed that the maximum entropy
estimate is the least biased estimate possible on the information at hand and it maximises the
uncertainty subject to the partial information that is given. This means that the choice of any
other distribution will require making additional assumptions unsupported by the given
constraints (Duracz, 2006). A direct derivation of the maximum entropy distribution
involves solving a system of non-linear equations, the solution of which involves variational
calculus using the Lagrange multiplier method. The maximum entropy distribution can help
assign probability distributions given certain constraints. For instance, when only the lower
and upper bounds for an uncertain parameter are known, the principle of maximum entropy
would indicate a uniform distribution. When the minimum, maximum and mode values are
given, the beta distribution that maximises the entropy is chosen (Harr, 1987, quoted in
Mishra, 2002).

In order to better represent the divergence of opinions and the uncertainty involved in
estimating the cross-sectoral effects of adaptation measures, the minimum and maximum
values provided by the experts were in this case combined with equal weight assigned to
each expert. Thus, expert judgments are aggregated to construct a uniform distribution,
using the minimum and maximum values of all experts as follows:

U(a.b) = [min al , maxal;]

where min o} is the minimum of the minimum values elicited by the experts, and
maxal, is the maximum of the maximum values elicited by the experts.

4.4.2 Quantification of cross-sectoral effects

The quantification of cross-sectoral effects is performed through the calculation of an
overall indicator of the capital cost of each adaptation measure, which reflects all the cross-
sectoral effects of the examined measure. The cost of each adaptation measure can be
considered as an indication of the total damages because its implementation is vital in order
to adapt the upcoming damages in the case that it is not be implemented.

For example, wetland creation has impacts on the coastal sector, which is considered as the
main sector here, but also on biodiversity, agriculture and water. The effects of wetland
creation for the coastal sector are 100% positive. An expert might use CrossAdapt to express
his judgement that the effects of wetland creation on water are positive and equal to 20% of
the triggered changes in the coastal sector. Correspondingly, the effects on biodiversity are
positive and equal to 50% and the effects on agriculture are negative and equal to 60%.

40



In the case of fuzzy triangular averages, the cross-sectoral indicator of adaptation measure i
in sector j across k sectors is estimated as follows:

n n n
CSEff;; = CC; * (100% — zkzll{‘, 100% — zkzll,’s, ,100% — zk=11§)

where: CSEff; is the cross-sectoral effect of adaptation measure i in sector j
CCi is the Capital cost of adaptation measure i in sector j
I¥ is the minimum average intensity of adaptation measure i in sector k (in %)
1% is the most plausible average intensity of adaptation measure i in sector k (in %)
I¥ is the maximum average intensity of adaptation measure i in sector k (in %)

If the Maximum Entropy approach is used, the cross-sectoral indicator of adaptation
measure i in sector j is estimated as follows:

n n
CSEffij = CC; * (100% — Z 1¥,100% — Z 1%

k=1 k=1

where IF is the minimum intensity of adaptation measure i in sector k (in %)
I¥ is the maximum intensity of adaptation measure i in sector k (in %)

If required, the fuzzy cross-sectoral indicators can be represented by a crisp value after
defuzzification and, thus, the expected value and variance of the fuzzy number can be
estimated using fuzzy sets and integration theory (e.g. Liu & Liu, 2002; Bojadziev &
Bojadziev, 2007).

The estimation of the cross-sectoral indicators was performed through conducting a survey.
The survey consisted of three parts, a brief description of which follows:

Step 1: Development of CrossAdapt tool and design of the survey

The development of a specific tool should help the elicitation of experts’ judgments
regarding the quantification of the cross-sectoral effects. Therefore, the CrossAdapt tool was
developed and modified for each sector to include the specific adaptation measures as
defined within the adaptation and mitigation review (Deliverable D4.2). For each adaptation
measure a brief definition of the examined measure was specified providing a common basis
for evaluation by the experts. After completion of the CrossAdapt tool, the survey
specifications were established taking into consideration potential emerging problems.

Step 2: Pilot phase of the survey

The functionality of the CrossAdapt tool was assessed using a pilot survey. The CrossAdapt
tool was iteratively tested and modified in order to improve its effectiveness. Continuous
trials were performed through conducting personal interviews with experts from various
sectors. The aim of this pilot phase was to identify potential issues, which could hamper the
evolution of the survey.
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Step 3: Main phase of the survey

The implementation of the survey was performed mainly by means of personal interviews.
This approach was selected because it allowed clarifications to be provided to experts which
assisted the completion of the CrossAdapt tool in an appropriate way. Nevertheless, due to
time and budget constraints, some questionnaires were sent to experts by email and the
interview was carried out by telephone.

A crucial parameter for the successful implementation of the survey was the identification of
a representative sample of experts. The sample of experts consisted of modellers and
physical scientists for the examined sectors. The initial list of experts was based on the
partners of the CLIMSAVE project, and various other experts with relevant scientific
background. Initially, a large number of experts were approached, and finally 56 of them
participated in the survey and completed the CrossAdapt tool questionnaires. The number of
stakeholders, who participated in the survey is presented in Table 8 for each sector.

Table 8: Number of stakeholders who participated in the expert judgement procedure.

Sector Number of stakeholders
Coasts 10
Urban 4
Biodiversity 13
Forests 11
Water 14
Agriculture 4

4.4.3 Estimation of cross-sectoral effects

The collected data within the CrossAdapt tools were analysed in order to calculate the cross-
sectoral indicators for each adaptation measure according to the methodological approach
described. The calculated values from the Basic analysis are presented in Table 9. Table 9
also includes the cross-sectoral indicators, which were estimated by implementing two
‘extreme’ weighting factors of uncertainty, i.e. with B value equal to 0 and 1. Specifically,
the triangular distributions ‘objective’ and ‘subjective’ measures of uncertainty are
presented, which resulted from the two different ways of weighting as described previously.

The wide range of some of the estimates presented in Table 9 reflects the divergent views of
experts on a number of adaptation and cross-sectoral issues. The main reasons for this
differentiation consist of the misconception that when experts are given the same data they
will reach the same conclusions, gaps in existing knowledge, perceiving the question
differently, having different scientific and professional experience and approaches to analyse
the information provided (Meyer & Booker, 2001).

In accordance with the literature (e.g. World Bank, 2010; Harrison et al., 2012), the experts
stated that they were not aware of research efforts or practical applications dealing with
cross-sectoral impacts of adaptation strategies. Furthermore, experts with different scientific
backgrounds responded differently in some cases, providing however an equally acceptable
justification for their opinion. Finally, an issue that was also pointed out by the experts was
the ‘contradicting’ effect of specific actions described under an adaptation measure.
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Table 9: Cross-sectoral indicators for the examined sectors.

Basic analysis Objective analysis Subjective analysis

Min Mode Max Min Mode Max Min Mode Max
Wetland Creation 7% 58% 111% 39% 105% 170% 13% 61% 113%
Managed Realignment 44% 135% 197% 71% 171% 242% 63% 160% 234%
% Managed Retreat 44% 112% 163% 52% 119% 172% 31% 109% 170%
S | Low Crested Structures 74% 87% 106% 58% 72% 95% 84% 98% 119%
Beach Nourishment 87% 102% 115% 55% 75% 94% 88% 105% 119%
Storm-surge barriers 11% 54% 97% 0% 52% 107% -1% 42% 93%
Green roofs 35% 70% 110% 55% 86% 117% 30% 64% 103%

_‘Z“ Urban intensification -23% 20% 70% -26% 17% 69% -30% 14% 66%
5 | Green infrastructure -80% -10% 60% -50% 14% 7% -99% -29% 47%
Rainwater harvesting 0% 40% 68% -13% 37% 68% -8% 32% 60%

> | Habitat restoration -18% 27% 78% -9% 53% 109% | -24% 16% 65%
% Networks 88% 118% 144% 90% 119% 145% 95% 127% 153%
'-% Corridors 76% 84% 91% 92% 94% 97% 79% 90% 100%
o0 | Protected areas 49% 62% 78% 39% 53% 70% 31% 44% 61%
Use of chemical control methods 144% 181% 221% 165% 222% 287% 192% 254% 317%
Afforestation & reforestation 4% 73% 144% -39% 42% 118% -17% 58% 137%
@ | Use of harvesting & thinning 92% 113% 135% 117% 137% 158% 99% 121% 146%
§ Protected areas 26% 46% 65% 20% 43% 61% 21% 42% 60%
L | Road building in forests 123% 138% 158% 123% 138% 158% 131% 146% 168%
Prescribed burning 85% 106% 130% 87% 111% 137% 63% 91% 119%
Removal of dead trees 135% 155% 176% 136% 159% 181% 139% 159% 179%

o Demand management -11% 34% 85% -18% 34% 94% -24% 22% 78%
% Increased storage -126% -45% 49% -161% -67% 49% -142% -51% 49%

= Increased infiltration -104% -46% 26% -140% -12% 14% -148% -79% 9%
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Reduced flood impact -98% -36% 43% -159% | -89% 13% -147% | -81% 4%
Reduced flow rate -5% 36% 85% -17% 34% 94% -20% 28% 79%
Creation of wetlands -4% 38% 81% -38% 13% 66% -13% 31% 81%
Disaster early-warning system -8% 58% 118% -710% 6% 64% -24% 54% 116%
Intra-basin water transfer 60% 140% 215% 86% 151% 223% 57% 135% 212%
Integrated coastal management 0% 65% 120% 45% 105% 168% -42% 43% 101%
Flood prevention standards 58% 85% 108% 35% 65% 90% 63% 84% 105%
Conservation-no tillage 25% 53% 93% 33% 57% 93% 34% 55% 91%
Flood prevention infrastructure 68% 93% 120% 81% 107% 135% 68% 90% 116%
% Genetic modified organics 90% 103% 140% 92% 105% 144% 90% 102% 144%
% Breeding selection 73% 83% 95% 63% 77% 93% 63% 77% 93%
E» Water storage 93% 100% 115% 100% 100% 100% 85% 100% 130%
Weed and pest control 110% 123% 135% 105% 115% 130% 120% 142% 160%
Use of different species 93% 108% 120% 110% 125% 145% 66% 93% 106%
Planting time adjustment 93% 103% 118% 80% 90% 100% 99% 115% 145%
Varieties of crop planted 95% 105% 115% 80% 90% 100% 90% 103% 115%
Water-saving irrigation 68% 83% 103% 35% 60% 90% 55% 75% 105%
Water and irrigation infrastructure 63% 78% 93% 48% 68% 89% 48% 68% 85%
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The analysis of the estimates was performed using the average AE values of the experts for
each sector, where the cross-sectoral effect was identified. Setting an arbitrary ambiguity
threshold score of average AE 10% or lower, the most ambiguous adaptation measures were
identified and are presented in Table 10. The results show that the ambiguity effect is lower
in the sectors of urban, forests and biodiversity. Nevertheless, the analysis leads to higher
ambiguity in the sectors of water, agriculture and coasts. Table 11 depicts the ambiguity
effect of each examined adaptation measure for each sector separately. The measures “Intra-
basin water transfer”, “Reduced flow rate”, “Managed Realignment” and ‘“Managed
Retreat” have the highest ambiguity effect in comparison with the other adaptation
measures.

4.5 Operationalising the CEA and uncertainty analysis in CLIMSAVE

As mentioned previously, the CEA algorithm ranks the unitary cost estimates of the
examined adaptation measures. Regarding the uncertainty analysis methods, the Monte
Carlo technique and fuzzy sets analysis were selected. Their selection was determined by
assessing various criteria including the availability of data and the simplicity of the
calculation. Triangular and uniform distributions were selected for the implementation of the
Monte Carlo technique. Correspondingly, the fuzzy sets analysis was performed through the
implementation of the representative value and Ramik-Rimanek approaches.

The CEA and uncertainty analysis were operationalised by creating a dynamic link library
(DLL) containing the necessary algorithms (Figure 9). The DLL requires the user to specify
the following inputs for the implementation of the CEA and uncertainty analysis:

e Membership function (for the implementation of fuzzy sets analysis),

e Minimum, mean and maximum cost of each adaptation measure from the cost
database; see Table 5 (for the implementation of fuzzy sets analysis and Monte
Carlo simulation with triangular and uniform distributions).

For each run of the CEA algorithm the results for both the basic and uncertainty analysis are
calculated and summarised. The Monte Carlo analysis is calculated using the mean unitary
cost estimate from the corresponding estimated mean values as derived by the 1,000
performed iterations.
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Table 10: Identification of the most ambiguous adaptation measures for each sector.

Agriculture

Urban

Water

Biodiversity

Coasts

Forests

Intra-basin water

transfer

Disaster early-warning
systems

Intra-basin water transfer

Intra-basin water transfer

Integrated coastal

Disaster early-
warning systems
Intra-basin water

Intra-basin water transfer

management transfer
Integrated coastal Flood prevention
Agriculture management infrastructure
g Flood prevention Genetically modified
standards organisms
Weed and pest control
Use of different species
Water-saving irrigation
Urban Urban intensification
Demand management Reduced flood impact Increased storage Demand management
Water Increased infiltration Reduced flow rate Reduced flow rate Increased infiltration
Reduced flow rate
o ) Corridors Habitat restoration Networks
Biodiversity
Protected areas
Managed realignment | Managed realignment Managed realignment Managed realignment
Managed retreat Managed retreat Managed retreat
Coasts Storm-surge barriers Low crested structures
Beach nourishment
Storm-surge barriers
Chemical control Afforestation . L
s methods Reforestation Use of harvesting & thinning

Prescribed burning
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Table 11: Ambiguity effect of the examined adaptation measures for each sector.

Agriculture

Urban

Water

Biodiversity

Coasts

Forests

Agriculture

Disaster early-warning system

Intra-basin water transfer

Integrated coastal management

Flood prevention standards

Conservation-no tillage

Flood prevention infr

Genetic modified organics

Breeding selection

Water storage

Weed and pest control

Use of different species

Planting time adjustment

Varieties of crop planted

Water-saving irrigation

Water and irrigation infr

X

X

X

X
X
X

Urban

Green roofs

Urban intensification

Green infrastructure

Rainwater harvesting

Water
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Figure 9: DLL for the implementation of CEA algorithm and uncertainty analysis.

4.6 Outputs of the CEA

The output of the CEA algorithm includes the present cost estimate of each adaptation
measure for both the basic and uncertainty analyses. The results of the uncertainty analysis
depend on the selected uncertainty method. Figures 10-17 show the outputs obtained from the
implementation of the CEA for the various uncertainty techniques (Monte Carlo analysis with
triangular and uniform distributions and fuzzy sets analysis with representative value and
Ramik-Rimanek approaches, respectively), incorporating the cross-sectoral effects of each
adaptation measure into the analysis.

Specifically, Figures 10 and 11 illustrate the outputs from the implementation of the CEA
using Monte Carlo analysis with triangular distributions as the uncertainty method for both of
the options of excluding and including cross-sectoral indicators. Measure 2 appears to be the
most cost-effective adaptation measure without taking into consideration the cross-sectoral
effects, while Measure 4 has the worst cost-effective ratio. Measure 2 remains the best option
after the implementation of the Monte Carlo analysis with triangular distributions, while
Measure 5 becomes more cost-effective than Measure 3 (Figure 10). Taking cross-sectoral
effects into consideration, Measure 3 is the most cost-effective adaptation measure and
Measure 4 the worst (Figure 11). The implementation of the Monte Carlo analysis with
triangular distributions shows that Measure 3 is the most cost-effective measure, while it
alters the ranking between Measure 5 and Measure 1.
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Results obtained using Monte Carlo analysis with uniform distributions are shown in Figures
12 and 13. In this illustration, Measure 4 has the best cost-effectiveness ratio when cross-
sectoral effects are not included and Measure 5 the worse. Taking account of cross-sectoral
effects results in Measure 4 becoming the least cost-effective, whilst Measure 2 becomes the
best.

The method of fuzzy sets analysis with the representative value approach results in Measure 2
being the most cost-effective adaptation measure without taking into consideration the cross-
sectoral effects, while this is Measure 3 when cross-sectoral effects are taken into
consideration (Figures 14 and 15). Finally, according to the results of the fuzzy sets analysis
with the Ramik-Rimanek approach (Figures 16 and 17), Measures 1 and 2 seem to be more
cost-efficient without taking into consideration the cross-sectoral effects. Correspondingly,
Measures 1 and 3 can be considered as better options in the case of taking into consideration
the cross-sectoral effects.

This analysis shows that parameter uncertainty can significantly affect the ranking of
adaptation measures. Thus, it is highly important to use the most appropriate technigques to
attempt to quatify this uncertainty.
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Figure 10: Output of the CEA algorithm using Monte Carlo analysis with triangular
distributions as the selected uncertainty method without cross-sectoral effects.
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Figure 11: Output of the CEA algorithm using Monte Carlo analysis with triangular
distributions as the selected uncertainty method including cross-sectoral effects.
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Figure 12: Output of the CEA algorithm implementing Monte Carlo analysis with
uniform distributions as selected uncertainty method without cross-sectoral effects.
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Figure 13: Output of the CEA algorithm using Monte Carlo analysis with uniform
distributions as the selected uncertainty method including cross-sectoral effects.
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Figure 14: Output of the CEA algorithm using Fuzzy Sets analysis with representative
value approach as the selected uncertainty method without cross-sectoral effects.
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Figure 15: Output of the CEA algorithm using Fuzzy Sets analysis with repesentative
value approach as the selected uncertainty method including cross-sectoral effects.
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Figure 16: Output of the CEA algorithm using Fuzzy Sets analysis with Ramik-Rimanek
approach as the selected uncertainty method without cross-sectoral effects.
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Figure 17: Output of the CEA algorithm using Fuzzy Sets analysis with Ramik-Rimanek
approach as the selected uncertainty method including cross-sectoral effects.

5. Application: The cost of adaptation in the water sector

This section illustrates an application of the CEA methodology for a case study based on the
water sector. Estimates of water use under baseline conditions, specified changes in climate
and socio-economic conditions, and after implementation of adaption measures were obtained
from the IAP. The “damage” scenario was defined as the CSMKS3 climate model combined
with an Al emissions scenario, mid climate sensitivity and the lcarus socio-economic
scenario for the 2050s time slice (see Deliverable D3.3 for details of the CLIMSAVE socio-
economic scenarios). The adaptation scenario was specified assuming the maximum
achievable water savings due to technological change, which is credible based on the
availability of various capitals (human, social, manufactured, financial) within the Icarus
socio-economic scenario. The calculated figures for water use for the baseline and damage
and adaptation scenarios are summarised in Table 12.

Table 12: Calculated water use for the baseline and “damage” and “adaptation” scenarios.

Scenario Water use (mil. m%)
Baseline 93,758,029
Damage 133,290,019
Adaptation 126,606,974
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The avoided water use was estimated by subtracting the water use of the damage scenario
from the water use of the adaptation scenario. Therefore, the total avoided water use amounts
to 6,683,045 mil. m*, while the residual damage is 32,848,945 mil. m®.

The adaptation measures, which can achieve the specific levels of water savings due to
technological changes, are presented in Table 13, including their minimum, mean and
maximum unitary cost estimates. Table 14 shows the cross-sectoral indicators for the
examined adaptation measures. It should be mentioned that for the case of adaptation
measures which have not been evaluated within the framework of Cross-Adapt, a
correspondence of the available cross-sectoral indicators with the existing adaptation
measures was attempted. Finally, the cost estimates for the adaptation measures including the
cross-sectoral effects are presented in Table 15.

Table 13: Cost estimates for adaptation measures leading to water savings due to
technological changes (€/m®).

Water savings due to technological change Min Mode | Max
Aquifer recharge 0.03 0.44 0.74
Dams and reservoir 0.02 0.08 0.23
Desalination sea water thermal 0.12 1.58 7.25
Desalination sea water reverse osmosis 0.29 151 12.09
Desalination brackish water 0.15 1.22 8.32
Desalination brackish water reverse osmosis 0.09 1.39 8.32
Rainwater harvesting 0.03 0.46 2.25
Recycling 0.03 0.45 1.24
Wastewater reuse 0.03 0.17 0.31
Water supply systems creation, connection and rehabilitation 0.01 0.06 0.16

Table 14: Cross-sectoral indicators for adaptation measures leading to water savings
due to technological changes.

Water savings due to technological change Min Mode | Max
Aquifer recharge -126% | -45% 49%
Dams and reservoir -126% | -45% 49%
Desalination sea water thermal -5% 36% 85%
Desalination sea water reverse osmosis -5% 36% 85%
Desalination brackish water -5% 36% 85%
Desalination brackish water reverse osmosis -5% 36% 85%
Rainwater harvesting -126% | -45% 49%
Recycling -104% | -46% 26%
Wastewater reuse -104% | -46% 26%
Water supply systems creation, connection and rehabilitation -11% 34% 85%
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Table 15: Cost estimates including cross-sectoral effects for adaptation measures leading
to water savings due to technological changes (€/m°).

Water savings due to technological change Min Mode | Max
Aquifer recharge -0.04 -0.20 0.36
Dams and reservoir -0.03 -0.04 0.11
Desalination sea water thermal -0.01 0.58 6.16
Desalination sea water reverse osmosis -0.01 0.55 10.28
Desalination brackish water -0.01 0.44 7.07
Desalination brackish water reverse osmosis 0.00 0.51 7.07
Rainwater harvesting -0.04 -0.21 1.09
Recycling -0.03 -0.21 0.33
Wastewater reuse -0.03 -0.08 0.08
Water supply systems creation, connection and rehabilitation 0.00 0.02 0.14

The results derived using both the basic and uncertainty analysis show the robustness of the
estimates obtained vis-a-vis the cost-effectiveness of the examined adaptation measures
without taking into consideration the cross-sectoral effect. Specifically, the measures of
“Water supply systems creation, connection and rehabilitation”, “Dams and reservoir” and
“Wastewater reuse” are the most cost-effective options achieving the current levels of
adaptation (Tables 16 and 17). Measures related to desalination technologies are the least
cost-effective measures. The ranking of the examined adaptation measures was not altered
during the implementation of the different techniques of uncertainty analysis.

Table 16: Cost-effectiveness of the adaptation measures without including cross-sectoral
effects for basic and uncertainty analysis (€/m®).

Water savings due to technological change Basic I_\A.?qungjlgﬁ NEOSrtﬁfgfr:O Repllf:szezriltz;tive
Aquifer recharge 0.44 0.35 0.56 0.43
Dams and reservoir 0.08 0.07 0.05 0.09
Desalination sea water thermal 1.58 1.78 1.57 211
Desalination sea water reverse osmosis 151 4.64 5.84 2.68
Desalination brackish water 1.22 3.24 4 1.97
Desalination brackish water reverse osmosis 1.39 1.75 1.41 2.09
Rainwater harvesting 0.46 0.52 1.93 0.63
Recycling 0.45 0.24 1.06 0.50
Wastewater reuse 0.17 0.09 0.1 0.17
;/\r:gt%;:g)iﬁ)iléts%items creation, connection 0.06 0.03 0.04 0.07
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Table 17: Ranking of the cost-effectiveness of the adaptation measures without including
cross-sectoral effects for basic and uncertainty analysis.

Monte Monte Fuzzv - Fuzzy —
Water savings due to technological change | Basic Carlo - Carlo - y- Ramik-
- . Representative | .
Triangular Uniform Rimanek
Aquifer recharge 4 5 4 4 4
Dams and reservoir 2 2 2 2 2
Desalination sea water thermal 10 8 7 9 6
Desalination sea water reverse 0smosis 9 10 10 10 10
Desalination brackish water 7 9 9 7 8
Desalination brackish water reverse osmosis 8 7 6 8 9
Rainwater harvesting 6 6 8 6 6
Recycling 5 4 5 5 5
Wastewater reuse 3 3 3 3 3
Water supply systems creation, connection
L 1 1 1 1 1
and rehabilitation

The integration of cross-sectoral effects significantly affects the ranking of the examined
adaptation measures (Tables 18 and 19). According to the results of the basic analysis, the
measures “Rainwater harvesting” and “Recycling” are the most cost-effective. These results
are quite different to the analysis without cross-sectoral effects (Tables 16 and 17),
highlighting the significance of integrating cross-sectoral effects into cost-effectiveness
analysis. Nevertheless, the measures related to desalination technologies are still the least

cost-effective.

Table 18: Cost-effectiveness of the adaptation measures including cross-sectoral effects
for basic and uncertainty analysis (€/m3).

Water savings due to technological change Basic M‘I(')rnitaengjlgg : MOS;?fgfnrqlo Repllf:szezriltz;tive
Aquifer recharge -0.20 0.01 0.17 -0.11
Dams and reservoir -0.04 0.02 0.07 -0.02
Desalination sea water thermal 0.57 1.75 0.44 1.20
Desalination sea water reverse osmosis 0.54 2.53 1.71 1.69
Desalination brackish water 0.44 3.61 6.22 1.21
Desalination brackish water reverse osmosis 0.50 6.35 5.96 1.26
Rainwater harvesting -0.21 0.35 0.79 -0.02
Recycling -0.21 -0.03 0.21 -0.12
Wastewater reuse -0.08 -0.04 0.06 -0.05
Z\égtﬁg;;&?ilét?gztems creation, connection 0.02 0.03 0.13 0.03
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Table 19: Ranking of the examined adaptation measures regarding their cost-
effectiveness including cross-sectoral effects for basic and uncertainty analysis.

Monte Monte Fuzzv - Fuzzy —
Water savings due to technological change | Basic Carlo - Carlo - y- Ramik-
- . Representative | .
Triangular | Uniform Rimanek
Aquifer recharge 3 3 4 2 4
Dams and reservoir 5 4 2 5 5
Desalination sea water thermal 10 7 6 7 7
Desalination sea water reverse 0smosis 9 8 8 10 10
Desalination brackish water 7 9 10 8 7
Desalination brackish water reverse osmosis 8 10 9 9 9
Rainwater harvesting 1 6 7 4 1
Recycling 2 2 5 1 1
Wastewater reuse 4 1 1 3 1
Water supply systems creation, connection
R 6 5 3 6 6
and rehabilitation

The uncertainty techniques differentiated slightly the final rankings. Specifically, the
measures “Wastewater reuse” and “Recycling” are the most cost-efficient options according
to the results of Monte Carlo analysis using triangular distributions, while the measures
“Wastewater reuse” and “Dams and reservoir” are the best options when uniform distributions
are used. Alternatively, the method of fuzzy sets with the ‘representative value approach’ led
to the identification of the measures “Recycling” and “Aquifer recharge” as the best options.
Hence, performance of the uncertainty analysis on the results which included cross-sectoral
effects highlights the significant variation that can occur among the cost-effectiveness ranking
of adaptation measures when different uncertainty approaches are used.

Finally, the adaptation cost for each examined adaptation measure was estimated separately
for the basic analysis both with and without including the cross-sectoral effects. According to
the results presented in Table 20, adaptation costs range between 401 and 10,559 bil. €
without taking into consideration the cross-sectoral effects and between -1,383 and 3,847 bil.
€ taking into account the cross-sectoral synergies. It is obvious that all adaptation measures -
with the exception of “Water supply systems creation, connection and rehabilitation” - lead to
significant benefits when cross-sectoral effects are incorporated into the cost-effectiveness
calculations.
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Table 20: Adaptation cost of the examined adaptation measures for the basic analysis
(mil. €).

Water savings due to technological change -Cross-sectoral effects -
Exclusion Inclusion
Aquifer recharge 2,940,540 -1,323,243
Dams and reservoir 534,644 -240,590
Desalination sea water thermal 10,559,211 3,846,570
Desalination sea water reverse 0Smosis 10,091,398 3,676,152
Desalination brackish water 8,153,315 2,970,136
Desalination brackish water reverse osmosis 9,289,433 3,384,008
Rainwater harvesting 3,074,201 -1,383,390
Recycling 3,007,370 -1,374,798
Wastewater reuse 1,136,118 -519,368
\r/;/t?:lajr”?tjar;%z systems creation, connection and 400,983 137,480

6. Summary

Few attempts have been made to identify and quantify the potential cross-sectoral effects of
adaptation measures in economic terms. Thus, the quantification of cross-sectoral effects of
adaptation actions and, particularly, their integration into cost-effectiveness analysis remain
open and challenging issues in the area of climate change economics.

Within the context of the CLIMSAVE project, a methodological approach was developed for
quantifying in economic terms the inter- or intra-sectoral adaptation synergies for six sectors:
coasts, biodiversity, agriculture, water, forests and urban. The methodological approach relies
on the assumption that a direct relationship exists between the effectiveness of an adaptation
measure in a specific sector and its auxiliary effects in other ‘neighbouring’ sectors. Hence,
the methodology provides information on both the direction and intensity of cross-sectoral
impacts and their potential cost, so as to incorporate them into a cost-effectiveness evaluation
framework.

Considering that the issue of cross-sectoral effects is new, complex, and generally poorly
studied and, consequently, it is characterised by high uncertainty, an expert judgment
approach was utilised to synthesise the available qualitative and quantitative information into
the proposed framework. Finally, a specific tool, namely CrossAdapt, was developed to
facilitate the elicitation of experts’ judgments. The CrossAdapt tool seeks both to clarify if
each sector-specific adaptation investment generates positive or negative auxiliary effects on
neighboring sectors and to provide an estimate for the derived costs or benefits from these
cross-sectoral effects.

The methodological framework and the CrossAdapt tool were implemented within the
CLIMSAVE project with the participation of 56 experts. In order to calculate the cross-
sectoral indicators for each adaptation measure, the collected data were analysed and
interpreted by means of ‘unweighted’ and ‘weighted’ approaches, which led to similar results.
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A further analysis of the experts’ opinions was also carried out to examine if significant
ambiguities with respect to specific adaptation measures existed. The analysis was
implemented setting an arbitrary ambiguity threshold score of an agreement degree between
experts of 10% or lower. According to the results, the ambiguity effect is lower in the sectors
of urban, forests and biodiversity, while it is higher in the sectors of water, agriculture and
coasts. The disagreement between experts was attributed mainly to gaps in existing
knowledge and the fact that experts responded differently in some cases, providing however
an equally acceptable justification for their opinion. Finally, an additional issue was the
‘contradicting’ effect of specific actions described under an adaptation measure.

A CEA algorithm was developed to undertake the cost-effectiveness evaluation of the
examined adaptation measures based on ranking of their unitary cost estimates. The
implementation of the CEA algorithm required costing information for each of the examined
adaptation measures. As this information did not exist in an easily accessible format, an in-
depth bibliographical review was undertaken to collect cost estimates for the various
adaptation measures in different sectors within a database.

Several methods were used for performing an uncertainty analysis within the CEA algorithm.
Monte Carlo techniques and fuzzy sets analysis were chosen based on the availability of data
and the simplicity of the calculation. Triangular and uniform distributions were selected for
the implementation of Monte Carlo technique. Correspondingly, the representative value and
Ramik-Rimanek approaches were selected for the fuzzy sets analysis. The CEA algorithm
and the final uncertainty techniques were integrated into a CEA DLL for their effective
implementation.

Finally, a case study for the estimation of adaptation costs in the water sector was analysed.
The main conclusions show that the results derived using both the basic and uncertainty
analysis are relatively robust in terms of the cost-effectiveness of the examined adaptation
measures without taking into consideration any cross-sectoral effects. The integration of
cross-sectoral effects significantly alters the ranking of the adaptation measures, while the
results of uncertainty analysis were characterised by significant variation.
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Appendix A: The CLIMSAVE adaptation cost database

m Climate Change Integrated Assessment Methodology for Cross-Sectoral

w The CLIMSAVE project

Adaptation and Vulnerability in Europe

DATABASE

Forest-Biodiversity e

Agriculture

Sectors

Water
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Urban
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Adaptation measure Year Country Cost estimate Reference
40 Dune restoration, including education programmes 15-35€/m Jenks et al. (2005)
41 Dune reshaping and replanting 50 - 300 €m Jenks et al. (2008)
42 Sea walls and revetments 900 - 1300 €/'m Jenks et al. (2005)
43 Storm surge barriers 2009 0.7 - 3.5 million $/m Hillen et al. (2010)
44 Closure dams Bangladesh 0.03 millien $/m DHY Haskoning (2007)
45 Closure dams Bangladesh 0.006 million $/m DHY Haskoning (2007}
46 Storm surge barriers 2009 California 12.7 million $/mile Lee Hotz (2009)
47 Storm surge barriers 2006 UK 1.1 million $/ft Bowman (2007)
48 Storm surge barriers 2006 MNew York 0.5 million $/ft Bowman (2007}
49 Beach noursihment Australia 25-30 5/m3 SMEC (2012)
50 Groynes Australia 267 3/geotextile bag (2.5m3) SMEC (2012)
51 Groynes Australia 1667 $/m SMEC (2012)
52 Revetments Australia 7350 $/m SMEC (2012)
53 Rock groynes Australia 12388 $/m SMEC (2012)
54 Coastal dike - height 0.8 m 2006 Netherlands 441 million €/km Hillen et al. (2010)
85 Coastal dike - height 1.6 m 2006 MNetherlands 6.095 million €/km Hillen et al. (2010)
56 Coastal dike - height 2.4 m 2006 Netherlands 7.79 million €/km Hillen et al. (2010)
57 Coastal dike - height 0.5 m 2006 Netherlands 5.4 million €/km Hillen et al. (2010)
58 Coastal dike - height 0.75 m 2006 MNetherlands 7.1 million €/km Hillen et al. (2010)
59 Coastal dike - height 1 m 2006 Netherlands 5.8 million €/km Hillen et al. (2010)
60 Dike - rural 2008 Metherlands 9-10.8 million €/km Hillen et al. (2010)
61 Dike - urban 2008 Netherlands 18-21.6 million €/km Hillen et al. (2010)
62 Dike - rural 2006 Netherlands 4-11 million €/km Hillen et al. (2010)
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Appendix B: CrossAdapt Tool

Climate Change Integrated Assessment Methodology for Cross-Sectoral

Adaptation and Vulnerability in Europe
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% The CLIMSAVE project
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Organization:
Email:

MNotes:

CrossAdapt
An Expert-based Weighting Scheme for Assessing Cross-sectoral Impacts of Adaptation Measures
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Effects on
Biodiversity
Type of impact: Positive
Intensity - Central value: 50%
Intensity - Min value: 30%
Intensity - Max value: 60%
Degree of certainty: High

Effects on Coasts

1

wetland creation

!

-

Effects on Agriculture

l

Effects on Water

Type of impact: Megative
Intensity - Central value: 20%
Intensity - Min value: 10%
Intensity - Max value: 50%

Degree of certainty: Medium

Type of impact: Megative
Intensity - Central value: B0%
Intensity - Min value: 20%
Intensity - Max value: BO%

Degree of certainty: Medium
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Procedure for the completion of CrossAdapt

BIODIVERSITY
Type of impact: How will wetland creation affect biodiversity?
Positively
Intensity - Central value: What is the percentage change in the state of biodiversity?
50%
Intensity - Min value: What is the lower bound of your estimation?
30%
Intensity - Max value: What is the upper bound of your estimation?
60%
Degree of certainty: What is your certainty level regarding your estimation using a Likert scale?
High

AGRICULTURE

Type of impact: How will wetland creation affect agriculture?

Negatively

Intensity - Central value: What is the percentage change in the state of agriculture?

60%

Intensity - MIn value: What is the lower bound of your estimation?

20%

Intensity - Max value: What is the upper bound of your estimation?

80%

Degree of certainty: What is your certainty level regarding your estimation using a Likert scale?
Medium

WATER

How will wetland creation affect water sector?

Negatively

Intensity - Central value: What is the percentage change in the state of water?

20%

Intensity - Min value: What is the lower bound of your estimation?

10%

Intensity - Max value: What is the upper bound of your estimation?

50%

Degree of certainty: What is your certainty level regarding your estimation using a Likert scale?
Medium
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