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0. Preface 
 

This document is CLIMSAVE Deliverable D4.3 “Estimated costs of adaptation options 

under climate uncertainty”.  

 

In accordance with the CLIMSAVE DoW, WP4 deals with the assessment of cross-sectoral 

adaptation measures. It identifies those sectors (and their components), which are most 

exposed and sensitive to climate change, and develops metrics for cross-sectoral 

comparison. Social, economic and environmental indicators for the assessment of adaptive 

capacity are reviewed and selected, and the implications of adaptation options for mitigation 

explored to identify synergistic and antagonistic interactions. 

 

Specifically, subtask 4.4 aims at refining, adapting and standardising cost-effectiveness 

analysis (hereafter CEA) in order to cope with adaptation issues. The cost-effectiveness of 

well-defined adaptation strategies (on project and policy levels) will be determined by 

valuing the net cost of adaptation options vis-à-vis output performance (technical 

effectiveness) under climate uncertainty. This requires a range of economic and statistical 

techniques and concepts (both deterministic and probabilistic) and takes into account 

ancillary costs and benefits due to cross-sectoral antagonistic and synergistic effects. Non-

economic approaches are also developed in this deliverable to complement the financial 

approach. Appropriate adaptation cost functions are developed and tested for their suitability 

within the IA platform. 

 

1. Introduction 
 

Public funds allocated to the protection of the environment are increasingly subjected to a 

‘sustainability performance test’. This is more so amidst financial austerity and increasing 

labour unemployment, where international financing agencies and national governments 

alike feel compelled to assure markets and electorates that spending decisions obey the 

‘value for money’ imperative. As a natural corollary, there is demand for financial and 

economic analyses of the costs and benefits of alternative projects and/or policy measures.  

 

Climate change is a prominent terrain where a number of contested policy decisions have to 

be taken and is, therefore, an extensive and multifaceted arena of hypothesis testing and 

empirical application of financial and economic approaches to the (e)valuation of options. 

Both cost-benefit (CBA) and cost-effectiveness (CEA) analyses have been applied in the 

mitigation arena. They have been applied to a lesser extent in the adaptation areana, since 

uncertainties in mitigation propagate towards adaptation, making the application of CBA 

and CEA less amenable. This is conceptualised in Figure 1, where the magnitude of 

potential adaptation (AC) depends on the (uncertain) residual impacts linked to the 

(uncertain) amount of mitigation already undertaken (DC). Unmitigated impacts of climate 

change (AC) represent the upper bound of adaptation (with zero adaptation as the lower 

bound). Between these bounds, economists usually advise for an optimal investment in 

adaptation, that is, a level where marginal cost outweighs marginal benefits. In reality 

though, the amount of adaptation realised (AB) depends on an array of possibilities and 

constraints.  
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Figure 1: Adaptation potential. 

 

Within CLIMSAVE’s research strategy, the rationale for addressing the issue of cost-

effectiveness is threefold: Firstly, it is a pragmatic methodological choice as the alternative 

of using CBA in defining optimum adaptation levels remains surrounded by a host of time 

and resource consuming implementation problems. In this respect, CEA is more economical 

in terms of time and resources and, therefore, ‘decision-maker friendly’. Secondly, CEA has 

proven its capacity to address a number of similar issues in the domain of health 

management where uncertainties on cost and the effectiveness of i.e. new treatments, are 

large. Last but not least, by defining exogenously the target to be achieved with the least 

cost, CEA has less the flavour of a fully-fledged economic rationale than CBA with its 

welfare theoretical basis. This makes CEA attractive to both climate scientists and activists. 

The structure of CEA within the general structure of WP4 is illustrated in Figure 2. 

 

This report describes the CEA methodology and how we have implemented this in 

CLIMSAVE. We address key methodological issues referring to uncertainty and report in 

detail on specific topics. We conclude with insights gained and proposals for the further 

development of the CEA methodology. 
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Figure 2: The relative position of the CEA within WP4. 

 

2. Definitions and concepts 
 

Adaptation, as defined by the Intergovernmental Panel on Climate Change (IPCC), is an 

“adjustment in natural or human systems in response to actual or expected climatic stimuli 

or their effects, which moderates harm or exploits beneficial opportunities” (IPCC, 2001). 

However, in relation to concrete applications there is often a lack of broad agreement about 

what should and should not be included under adaptation
1
. The reason for this is that 

adaptation is highly complex, spatially specific, and that genuine risk and uncertainty issues 

surround all its cross-sectoral repercussions, along with the timing and effectiveness of 

measures.  

 

There are multiple types of adaptation, including anticipatory, reactive, autonomous and 

planned adaptation. In CLIMSAVE the main focus is on planned adaptation, i.e. adaptation 

that requires some level of organisational or policy intervention, although some forms of 

autonomous adaptation are included within the meta-models within the Integrated 

Assessment Platform (IAP). Such planned adaptation includes not only ‘hard’, engineering 

options; it also includes market or non-market behavioural changes known as ‘soft’ 

adaptation.  

 

Cost-effectiveness analysis (CEA) is one of the many analytical techniques for assessing and 

ranking climate change impacts and adaptation measures
2
. CEA can be used to identify the 

highest level of a physical benefit given the available resources (e.g. delivering the 

maximum reduction in risk exposure subject to a budget constraint), as well as the least-cost 

option (including a combination of options) for reaching a prescribed target (e.g. the supply 

of a given quantity of potable water). It is the latter form (i.e. searching for least cost 

solutions), which CEA customarily takes in health, water and climate economics. Because it 

                                                 
1
 For example, any self-induced, market-based change in consuming and producing patterns could in principle 

be regarded as adaptation as far as it directly or indirectly affects future climate damages. Or, should we count 

all educational or political measures contributing to the enhancement of human and social capital, and 

consequently adaptive capacity, as adaptation? See Callaway (2003). 
2
 Others include: Cost-benefit analysis, risk analysis, multicriteria analysis, risk-efficiency analysis. 
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ranks options, CEA represents a decision support framework. It relies on the basic 

assumption that we are able to estimate with reasonable certainty the unit cost of achieving a 

predetermined level of adaptation for a number of alternative adaptation options (measures, 

projects, or technologies) or a combination of options. The latter points to the need to 

distinguish clearly rivalry in application between the options: for technological (or any 

other) reasons, not all options can be combined with one another. Such conflicts in 

application should be noted and taken care of when calculating the least cost combination.  

 

The aim of the CEA is to find the least costly option(s) for meeting selected targets. The 

targets represent the ‘benefits’ of the options that, in contrast to CBA, are measured in non-

monetary units (e.g. protecting x km
2
 of coastline; keeping the risk of flooding under a fixed 

level). Here lies the first difficulty with the conceptual delimitation of adaptation options: 

whereas in the mitigation domain a physical measure of effectiveness (and consequently 

benefit) is readily available (equivalent t CO2 abated), this is obviously not the case with 

adaptation options. In contrast to mitigation, the physical outcome of adaptation varies by 

sector, location and technology. While thus the output (or benefit) of competing, specific 

adaptation options should in principle be the same or, at least, similar, we face a multitude of 

metrics with which to express this output.  

 

To create further difficulty, some adaptation investments are joint production processes, 

meaning that they may address multiple climate impacts simultaneously. CLIMSAVE 

explicitly addresses joint adaptation processes by focussing on inter- or intra-sectoral 

adaptation and mitigation synergies (Task 4.3). The possibility of identifying all possible 

synergistic and/or antagonistic effects across sectors is constrained by the fact that CEA is 

essentially a partial, rather than a general equilibrium approach. However, adaptation 

investments may have ancillary benefits or costs within a sector or between ‘neighbouring’ 

sectors, which can be easily traced and taken into account. In this case, the optimisation 

process, and consequently the algorithm through which the least cost solution is calculated, 

turns out to be much more complicated. If the by-products of a specific adaptation 

investment can be easily monetised, then this difficulty can be overcome by subtracting (or 

adding) any positive (or negative) by-products from the financial cost of the measure. This 

in turn entails that we take into account any savings due to positive, or excess, costs due to 

negative externalities, however this is generally not feasible or appropriate.  

 

The problem with metrics for outputs complicates the clear delimitation of costs on the input 

side. The IPCC Fourth Assessment Report defines adaptation costs as “the costs of planning, 

preparing for, facilitating, and implementing adaptation measures, including transition 

costs”, while the definition for adaptation benefits is “the avoided damage costs or the 

accrued benefits following the adoption and implementation of adaptation measures” 

(IPCC, 2007). As with mitigation, adaptation costs can be either economic or financial. 

There is a very important difference between the two: 

 

a) Financial cost is budgeted, historical or projected, investment expenditure within 

the budgetary framework of the adaptation strategy or intervention under 

consideration. 

b) Economic cost is a wider concept that includes, besides out-of-pocket financial 

expenditure, an estimation of opportunity cost, i.e. benefits forgone from not 

investing in other areas of economic and social interest due to the employment of 

resources in the specific adaptation project. Opportunity cost is an indication of 

what alternatives must be sacrificed to obtain something. In the climate adaptation 
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context, it is a measure of forgone social benefits (income, employment, leisure 

etc.) when scarce resources are employed in order to adapt to a negative climate 

impact, instead of putting those resources to their next best use. Additionally, 

opportunity costs typically exclude ‘transfer payments’, such as domestic taxes 

and charges. 

 

Opting to work with economic or financial cost does make a difference for the ranking of 

alternative investments because equal amounts of expenditure may have different 

opportunity costs. This is particularly the case for planned adaptation, where the allocation 

of public funds is at stake, whereas autonomous adaptation is undertaken with mostly 

private funding. Nevertheless, in order not to add unnecessary complication to the costing 

procedure, we opt in CLIMSAVE to work with financial cost. For the same reason, we also 

disregard any transaction costs incurred by the design, implementation and maintenance of 

adaptation investments.  

 

Costing of adaptation measures is usually based on investment and financial flow analysis. 

Depending on the time horizon of the investment and the ‘time slices’ allowed for by the 

analyst, adaptation costs are calculated according to standard investment appraisal 

procedures and expressed in Net Present Values (NPVs) and/or in annual equivalents 

(annuities). The calculation of both NPVs and annuities assumes the use of discount rates. 

The selection of a suitable (social) discount interest rate is a vital parameter for similar long-

term estimations. Economic theory and practice are not in a position to provide a definite 

answer on the choice of discounting rates, since in essence the issue of discount interest rate 

is a moral issue related to perceptions of intergenerational justice. For example, in OECD 

countries, the proposed discount interest rates for long-term investments range between 3 

and 12% (OECD, 2007). The European Union recommends a 4% interest rate for mid- and 

long-term investments, but also accepts implementation of lower interest rates in the case of 

extended timelines, such as climate change (European Commission, 2005). In accordance 

with usual practice, we consider a suitable social discount rate for adaptation to be in the 

range of 1% to 3%.  

 

The time horizons for adaptation investment can be very long (> 50 years). However, 

horizons which are too long, i.e. past 2050, would in principle make the estimation of 

annuities impossible because adaptation should then be seen as a complex and evolving 

sequence of events, varying over time and requiring further learning and iteration. Such 

dynamic effects are extremely difficult to include in a cost-effectiveness analysis without 

multiple assessments over different time periods. Furthermore, the flexibility of an ‘adaptive 

adaptation strategy’ (AAS) is reduced the longer is the time horizon of an adaptation 

investment due to processes of technological and financial lock-in. It would make economic 

sense for a CEA if different adaptation options with equal NPVs could be weighted 

according to the degree of flexibility they provide to managers for future adjustments. Such 

a ‘flexibility premium’ would ceteris paribus favour more flexible over non-flexible 

adaptation strategies.  
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3. Cost-effectiveness analysis and methods for the treatment of uncertainty  
 

3.1 General framework of the CEA 

 

The implementation of cost-effectiveness analysis for the assessment of climate change 

adaptation policies and projects includes the steps depicted in Figure 3. A brief description 

of these steps is provided as follows: 

 

Step 1: Scoping the problem 

 

The main scope of the examined problem must be defined in order to clarify the boundaries 

and the potential limitations of the performed analysis. The adaptation calculus assumes the 

choice of a specific baseline, and inaction and mitigation scenarios in order to delimit the 

adaptation potential, AC. Scoping the issue further includes fixing the sector and impacts of 

interest, investigating possible cross-sectoral effects, setting the time horizon of the 

investigation, deciding whether to work with financial or economic cost, locating existing 

cost estimates and relevant databases, deciding on how to address uncertainty, and assessing 

the adaptive capacity of regions and social groups, etc.  

 

Step 2: Fixing the adaptation target  

 

CEA begins with a fixed adaptation target to be achieved. As is usual in similar comparative 

assessment methodologies, targets are fixed as a difference in the final states which would 

be achieved both ‘with’ and ‘without’ implementation of the project. Therefore, the 

adaptation target is defined as future avoided risks or damages of climate change in relation 

to the baseline future risks or damages accruing under the ‘business-as-usual’ scenario.  

 

The adaptation target is defined as the total damages or the annual flow of avoided damages 

over the lifetime of the project expressed in the suitable metric (i.e. population protected 

from accelerated sea level rise, or achieving residential standards for cooling or heating). 

Since it is assumed that a CBA for the determination of an optimum adaptation target is not 

feasible or preferred, targets should be fixed through a number of alternative procedures and 

criteria, such as the availability of public funds, maintenance of socially acceptable risk 

levels, remaining below scientifically established critical thresholds, etc. To complicate 

matters, adaptation strategies may address multiple objectives at once, in which case targets 

are joint products of a common adaptation process. An “adaptation portfolio” is then chosen 

as a means to insure against uncertainty.  

 

Step 3: Delimit the set of feasible interventions 

 

The appropriate set of interventions must be selected carefully to meet the main target of the 

analysis. CEA is very sensitive to the choice of strategies being compared. The selection of 

the options depends on the characteristics of the examined sector. These interventions can 

include policies, investment opportunities, programs or measures. For each intervention, 

detailed technical description and planning are necessary for the identification of possible 

conflicts for application, complementarities, economies of scale, and regional/national 

constraints in their use. The choice between hard and soft interventions is crucial here as is 

taking available cost databases into consideration. The number of alternative interventions 

under consideration must be within the computing capacity of algorithms and the software 
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used for the assessment of least cost solutions. Finally, the timing of the investment and its 

economic and engineering life cycle should be established. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Basic steps performed in a cost-effectiveness analysis. 

 

Step 4: Fixing the timing and duration of adaptation investments  

 

A crucial issue in CEA is the identification of the timing and duration of each of the feasible 

adaptation options selected in Step 3. This requires the specification of the base year, when 

the investment will be initiated, and the duration of its operation. Adaptation may refer to 

current measures to deal with existing risk (synchronous adaptation), current measures for 

future risks (proactive adaptation), or future measures to manage future risk (perspective 

adaptation). Time may be expressed as continuous or, as it usually the case in relevant IA 

models, in a comparative static approach, i.e. as discrete ‘time slices’. Analytical choices in 

matters of timing are of crucial importance for the results of the CEA due to the 

unpredictable influence of discount rates on the final ranking of the options.  
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Step 5: Costing adaptation investments  

 

All the components of cost must be identified and calculated as precisely as possible. This 

step demands the calculation of construction cost, maintenance cost and transaction cost, 

minus any cost savings due to positive synergies and cross-sectoral effects. The cost of 

possible structural investments in a specific sector planned under the conditions of the 

baseline scenario, should also be subtracted from the total adaptation cost estimates to obtain 

the net adaptation cost. Of course, it is possible to consider baseline scenarios as entailing no 

investment, in which case the latter cost item is zero. Aggregated cost estimates must be 

discounted at net present values and expressed in annual equivalents with an appropriate 

discount rate. The former applies to both hard and soft adaptation measures although it is 

obvious that costing soft measures in practice will incur numerous problems.  

 

In general, the net present value (NPV) of an adaptation investment (i) and its annual 

equivalent, Ai, can be presented as in the following equations: 

 

      ∑
   

(   ) 
 
      

and 

     
  

 
[  

 

(   )  
]  

 

where 

Ci
t
 = The net annual cost of adaptation investment in year t (to+n < t < T) planned to 

be implemented n years from now (t0+n) with a duration of T – n years [t0+n to T].   

r = the discount rate 

T = the planning horizon 

Ai = the annual equivalent (annuity) of investment i.   

 

The net annual cost Ci
t
 is the sum of annual financial cost Cf

t
 (construction and maintenance) 

plus annual transaction cost Ctr, minus any annual cost that can be characterised as baseline 

cost Cbase
t
 plus the net effect of ancillary, inter- or intra-sectoral impacts of the investment 

undertaken. That is: 

 

Ci
t
 = Cf

t
 + Ctr, - Cbase

t
 + [AnCi

t
 –AnBi

t
]        

 

where AnCi
t
 denotes annual ancillary cost and AnBi

t
 annual ancillary benefits of investment 

i. 

 

In order to complete the picture, a weight factor indicating the effect of natural, human and 

social capitals on net annual cost Ci
t
 is also needed in order to quantitatively link adaptive 

capacity and cost-effectiveness. 

 

Step 6: Calculation of cost-effectiveness indicators 

 

The cost-effectiveness of each examined adaptation option is assessed with the help of 

appropriate cost-effectiveness indicators. The most efficient cost-effectiveness indicator in 

each case must be selected and calculated taking into consideration the special 

characteristics of each examined sector separately and the specific aim of the analysis. The 
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cost-effectiveness ratio is the most often used indicator. It is calculated as the net cost of an 

intervention per unit of achieved adaptation. 

 

There are two different categories of cost-effectiveness ratios: 

 

Average cost-effectiveness ratio (ACER) estimated as total NPVi of adaptation investment i 

divided by the total avoided damages (Dav) according to the following equation. This type 

of ratio is utilised for the evaluation of a single intervention against the baseline. 

 

           
         

           
                 

 

Incremental (marginal) cost-effectiveness ratio (ICER) estimated as additional net cost of 

implementing a particular intervention divided by the additional net damage avoided. ICER 

is used for the evaluation of an adaptation investment i compared to an alternative, existing 

adaptation investment j in a specific year. In the following equation adaptation investments i 

and j are compared. 

 

                                                                    
         

           
      

 
 

Step 7: Implementation of uncertainty analysis 

 

An uncertainty analysis must be conducted in order to check the robustness of the obtained 

cost-effectiveness indicators. Important prerequisites for the fulfilment of CEA constitute 

the detection of all uncertain parameters, the assessment of their fluctuation, the 

recalculation of all net costs and net benefit components taking into consideration their 

variance, and examination of the effects on cost-effectiveness of the examined interventions. 

The main uncertain parameters, which must be assessed for the acquisition of reliable 

results, are presented in the Table 1. 

 

Table 1: Main uncertainty parameters within CEA. 

Uncertainty domain Component 

Estimation of net investment cost 

Construction cost 

Operational and maintenance cost 

Other transaction and institutional costs 

Discount rate 

Quantification of effectiveness 

Direct damage avoided  

Indirect damage avoided 

Direct baseline damages 

Indirect baseline damages 
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3.2 Marginal Adaptation Cost Curves (MAdCCs) 
 

Similar to Marginal Abatement Cost Curves (MACCs) applied in the existing mitigation 

literature, the emerging idea of Marginal Adaptation Cost Curves (MAdCCs) could be of 

interest in the comparison of cost-effectiveness of various adaptation options. In contrast to 

mitigation, however, where a clearly defined metric of effectiveness (equivalents of t CO2 

abated) allows a relatively simple ranking of alternative technologies, this is not the case in 

the adaptation domain. Here, the multitude of metrics and the spatial/sectoral differentiation 

of adaptation conditions do not easily allow for an unequivocal ranking of adaptation 

measures - unless in a very narrowly defined setting. Nevertheless, we pursue further the 

idea of MAdCCs in CLIMSAVE in an effort to enrich our CEA estimation procedure. 

 

In the published literature various attempts have been made to develop Marginal Abatement 

Cost Curves (Hogg et al., 2008; MacLeod et al., 2010). The main research interest of 

Marginal Abatement Cost Curves has been to identify the relationship between the cost of 

different technologies or measures and the annual reduction of CO2 emissions. These curves 

can simplify the procedure for the identification of the marginal abatement cost for the 

achievement of a specific CO2 emissions reduction, the estimation of the total abatement 

costs for the fulfilment of this aim and the determination of a specific emissions budget for 

avoiding climate change impacts (Wreford et al., 2010). A typical Marginal Abatement Cost 

Curve is presented in Figure 4. 

 

 

Figure 4: A typical Marginal Abatement Cost Curve. Source: McKinsey (2007).  
 

The MAdCCs have an identical shape with the corresponding Marginal Abatement Curves, 

and the main point of differentiation is that they depict the relation between adaptation cost 

and the total achieved degree of adaptation. More specifically, MAdCCs provide a ranking 

of the examined adaptation technologies or measures according to their cost-effectiveness, 

which is presented by the vertical axis. Correspondingly, the horizontal axis shows the 

achieved degree of adaptation, which is equal to the damage avoided by the implementation 

of the examined adaptation technologies or measures. The degree of adaptation is estimated 
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by comparing the baseline scenario (where no implementation of adaptation technology or 

measures is assumed) with a scenario in which specific adaptation schemes are 

implemented. The figure indicates that the cost-effectiveness of the examined technologies 

or measures decreases for higher degrees of adaptation. A typical MAdCC is presented in 

Figure 5. 

 

 

Figure 5: A typical Marginal Adaptation Cost Curve (MAdCC). 

 

For a specific degree of adaptation represented by the x-axis, different adaptation 

technologies or measures can be characterised by their vertical positions in relation to the 

MAdCC, leading to the conclusion that some of them are cost saving, while others not 

(MacLeod et al., 2010; Moran et al., 2010). Moreover, MAdCCs offer the opportunity to 

identify a threshold cost, which can lead to a specific degree of adaptation. The 

determination of this least cost is crucial for the effective assessment of potential adaptation 

investments and projects through the specification of an adaptation budget.  

 

As with MACCs, two types of analysis are utilised for the development of MAdCCs. The 

first approach is a top-down analysis. This type of analysis usually exploits various 

macroeconomic general equilibrium models for the assessment of effectiveness, or the 

triggered impacts of a specific technology or measure by the estimation of an overall cost to 

the entire economy. Besides economy-wide analysis, some models offer the possibility for 

analysis in specific economic sectors. In contrast, bottom-up analysis focuses on the 

implementation of specific technology models, which can estimate the effectiveness or the 

impacts and costs for individual technologies or measures. The main differences between the 

two types of analysis can be summarised by the fact that a bottom-up approach is more 

detailed and can lead to the accurate calculation of the provoked variability for both of the 

components of effectiveness and cost for the case of specific technologies, while top-down 

analysis is identical to identifying, first, the variety of effective technologies or measures 

and determining, second, the total implementation cost in the economy or in a specific 

economic sector (MacLeod et al., 2010; Moran et al., 2010). 

 

Another categorisation of MACCs is between expert-based and model-derived curves. More 

specifically, expert-based MACCs assess the cost and the resulting effectiveness for each 
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single abatement, adaptation technology, or measure according to expert or bibliographical 

data, while the model-derived MACCs are constructed mainly with the results obtained from 

top-down or bottom-up approaches (Kesicki, 2010). 

 

A typical expert-based MACC is presented in Figure 5, while a model-derived MACC is 

depicted in Figure 6.   

 

Figure 6: A typical expert-based MACC. Source: Kesicki (2010). 
 

Finally, the necessary actions for the development of a MAdCC are summarised and 

presented in the following steps:  

 

1. Specification of the adaptation target. 

2. Identification of a baseline scenario for a specific year in the future. 

3. Definition of the examined adaptation technologies or measures, which can 

contribute to the effective achievement of the adaptation target.  

4. Estimation of the cost-effectiveness ratio of each adaptation technology or measure, 

which will be implemented within the specific period. This procedure requires the 

quantification of all cost components, the potential effectiveness of each adaptation 

technology or measure, and a comparison of the corresponding figures against the 

baseline scenario.  

5. Ranking of the estimated cost-effectiveness ratio for each adaptation technology or 

measure from the lowest to the highest value. 

6. Drawing of the MAdCC.  
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3.3 Treatment of uncertainty 

 

In practical applications, the costs, as well as the planned effectiveness of an adaptation 

measure, can never be known ex ante with certainty. Therefore, the second line of research 

within subtask 4.4 refers to the treatment of uncertainty.  Uncertainty analysis is a procedure 

that allows decision-makers to check and confirm the reliability of the obtained results. 

Indisputably, a major obstacle during the implementation of uncertainty analysis is the 

accurate identification and quantification of any separate source of uncertainty. The need for 

the dexterous manipulation of uncertainties led to the development of a flexible and 

sophisticated procedure, which can be utilised with either qualitative or quantitative data.  

 

We present here a range of statistical/economic techniques and concepts (both deterministic 

and probabilistic), as candidates to be used within the CLIMSAVE framework. Referring to 

uncertainty of the costs and effectiveness of measures, applications of CEA in health 

economics bear a considerable similarity to those in climate economics. We describe the 

most important analytical approaches to uncertainty below. 

 

3.3.1 The ExternE Approach 

 

We opt here to present in some detail the framework of the ExternE program for the 

assessment of environmental externalities developed by Spadaro & Rabl (2007). The authors 

have developed an approach establishing lognormal distributions for the determination of 

the major factors of uncertainty (with respect to atmospheric modelling and the monetary 

valuation of mortality). The lognormal distribution is appropriate for the manipulation of 

uncertainty for many environmental impacts, as highlighted by the ExternE program, 

because the total triggered impacts are constituted by various factors and the distributions of 

these factors are similar to a lognormal distribution.  

 

The estimation of damage costs in the ExternE program is performed with the 

implementation of the “Uniform World Model” (UWM). More specifically, the UWM 

model calculates the total damage costs taking into consideration the contribution of various 

factors and specifies the necessary sums and products for each separately. Therefore, if the 

total damage cost is the sum of the various factors as depicted in the following equation: 

 

   

 

then the estimates of mean value and standard deviation of the total damage cost can be 

provided by the following equations: 

 

   

 

     

 

Correspondingly, if the total damage cost (z) is the product of various factors, the geometric 

mean value and the geometric standard deviation of the total damage cost can be calculated 

with the following equations: 

  

22

2

2

1

2
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Spadaro & Rabl (2007) have proposed this approach based on lognormal distributions 

because the environmental damage costs are the product of various factors, and the 

lognormal distributions seem appropriate for their effective depiction. So, the estimation of 

geometric mean and geometric standard deviations can lead to the specification of the 

intervals where the results fluctuate, evaluating at the same time their robustness and 

reliability. 

 

In the case that the geometric mean and the geometric standard deviation values are equal to 

μg and σg correspondingly, there is a 68% probability that the true value will lie within the 

interval: 

 

 

 

 

 

or a 95% probability that the true value lies within the following interval:   

 

 

 

 

 

 

The comparison of the results obtained with the derived results of Monte Carlo analysis led 

to the conclusion that the lognormal distribution approach provides reliable estimates, while 

the procedure for the implementation of this approach is relatively simple. Finally, the ratio 

of the mean, μ, and geometric mean, μg, can be calculated using the following equation: 

 

   

  

 

 

The combination of the mean values (μ) derived by the basic analysis and the geometric 

standard deviations (σg) can lead to the calculation of the fluctuation range. The typical 

geometric standard deviation estimates that were adopted within the framework of the 

ExternE program are presented in Table 2. 
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 Table 2: The geometric standard deviation estimates (σg) used for the assessment of uncertainty in the ExternE program. 

Impact Category 
Emission 

Data 

Changes in the quality of air Dose-response functions 
Monetary 

Valuation 
Total 

Dispersion 
Chemical 

Formation 

Background 

Emissions 

Relative 

Risk 
Toxicity YOLL 

Building material 1.2 1.7 1.2 1.05 1.5 2 1 1.2 2.8 

Crops (Acid deposition) 1.2 1.7 1.2 1.05 1.5 2 1 1.2 2.8 

Crops (N deposition) 1.2 1.7 1.4 1.15 1.5 2 1 1.2 2.9 

Crops (O3) 1.2 1.7 1.4 1.15 1.5 2 1 1.2 2.9 

Crops (SO2) 1.2 1.7 1 1 1.5 1.5 1 1.2 2.1 

Morbidity (PM10) 1.2 1.5 1 1 1.5 1.5 1 2 2.7 

Mortality (PM10) 1.2 1.5 1 1 1.5 1.5 1.3 2 2.8 

Morbidity (Nitrates) 1.2 1.7 1.4 1.15 1.5 2 1 2 3.5 

Mortality (Nitrates) 1.2 1.7 1.4 1.15 1.5 2 1.3 2 3.6 

Morbidity (O3)  1.2 1.7 1.4 1.15 1.5 2 1 2 3.5 

Mortality (O3) 1.2 1.7 1.4 1.15 1.5 2 1.3 2 3.6 

Morbidity (SO2)  1.2 1.7 1 1 1.5 1.5 1 2 2.7 

Mortality (SO2) 1.2 1.7 1 1 1.5 1.5 1.3 2 2.8 

Morbidity (Sulphates)  1.2 1.7 1.2 1.05 1.5 2 1 2 3.4 

Mortality (Sulphates) 1.2 1.7 1.2 1.05 1.5 2 1.3 2 3.5 
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3.3.2 Techniques for uncertainty analysis 

 

Various techniques for the implementation of sensitivity analysis have been suggested. A 

brief description of these techniques follows: 

 

Simple variation sensitivity analysis 

The simple sensitivity analysis is considered as the most utilised form of uncertainty 

analysis. This method is based on the evaluation of the variance of one or more uncertain 

parameters within a specific range. A distinction of the performed methods can be 

categorised between one-way and multi-way sensitivity analysis. In one-way analysis, the 

uncertainty range of each component is examined separately, while the other uncertain 

parameters remain stable in order to identify the influence of each parameter on the results. 

Correspondingly, in multi-way analysis two or more parameters of uncertainty are varied 

simultaneously and the effects on results are examined (Briggs et al., 1994). 

 

Threshold analysis 

Threshold analysis is used for the detection of the critical value of the uncertain parameters. 

This method aims to identify the lower and upper levels of fluctuation for critical values, 

where the main results derived by the base case analysis differentiate (Briggs et al., 1994). 

 

Analysis of extremes 

The analysis of extremes involves the implementation of additional analyses taking into 

account the extreme estimates of the uncertain parameters and the comparison of the results 

obtained using these extremes with the outcome of the base case analysis (Briggs et al., 

1994). 

 

Probabilistic sensitivity analysis 

Probabilistic sensitivity analysis is a methodological approach which assigns ranges and 

distributions to uncertain parameters and evaluates the fluctuation of the results. The main 

methods that are utilised extensively are Monte Carlo simulation and Bootstrapping analysis 

(Briggs et al., 1994; Baltussen et al., 2004). More specifically, Monte Carlo simulation 

selects values randomly and simultaneously from the already specified probability density 

functions for each examined uncertain parameter and predicts the results for a large number 

of iterations. The IPCC (2000) utilised Monte Carlo simulation in order to check the 

robustness of the estimates of emissions and emission trends over time within the framework 

of the management of uncertainty in National Greenhouse Gas Inventories. Otto & Loschel 

(2008) studied the technological uncertainty and cost-effectiveness of CO2 emission trading 

schemes with Monte Carlo simulation. Finally, Monte Carlo calculation was performed 

within the framework of the ExternE program for the estimation of the external costs of 

energy, taking into account uncertainties in the numerous input data (European Commission, 

2005). Because of its importance, we give below a detailed presentation of Monte Carlo 

simulation techniques. 

 

Monte Carlo simulation 

Monte Carlo simulation is considered one of the most efficient methods for uncertainty 

analysis. This technique involves the random sampling of values based on an appropriate 

probability distribution for each uncertain input parameter used in the calculation procedure 

producing hundreds or even thousands of scenarios (iterations). A crucial step is clarifying 
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the number of input parameters which it is important to analyse, and the estimation 

procedure, which will lead to the set of outputs. For the purposes of CLIMSAVE, the 

components of cost and effectiveness constitute the input parameters, and the obtained cost-

effectiveness ratio, the output of our uncertainty analysis. 

 

Therefore, Monte Carlo simulation evaluates iteratively the specified output using sets of 

random numbers as inputs. The main difficulties associated with this method are: (a) the 

determination of the proper probability distribution in order to depict the uncertainty effects 

realistically for each input parameter; and (b) the large number of uncertain parameters. The 

necessary steps for effective implementation of Monte Carlo simulation are listed below: 

 

1. Identification of input and output parameters. 

2. Generation of a set of random values for all input parameters from a probability 

distribution for a specified number of iterations (e.g. 1000). 

3. Assessment of the results obtained for the output parameters. 

4. Reiteration of the procedure utilising different assumptions regarding the input 

parameters. 

5. Analysis of the results using appropriate histograms and summary statistics, such as 

mean or median value, variance, etc. 

 

The following four distributions are considered within the CLIMSAVE framework as the 

more representative types of distributions for adaptation measures: uniform, normal, 

lognormal and triangular. 

 

The selection of these types of distribution is performed taking into consideration factors 

such as the simplicity of the implementation, the number of successful applications with the 

utilisation of these distributions in similar case studies, and the capability of providing all 

the necessary data efficiently. The basic statistics and parameters for the selected 

distributions are presented in Tables 3 and 4. 

 

Bootstrap simulation  

Bootstrap sampling is a computational method of drawing a series of samples from existing 

estimates of results exploiting the variation of the uncertain parameters. More specifically, 

bootstrapping analysis attempts to determine the probability distribution from obtained data, 

through the creation of an artificial list of data drawing elements randomly from the initial 

list of data. Some elements may be picked more than once and in this case the method 

attempts to identify the distribution of the newly created lists for a large number of 

iterations. Several studies have utilised bootstrapping analysis in order to effectively handle 

uncertainty. Specifically, Khalifa et al. (2009) examined the uncertainty of waves in the 

Egyptian Northern Coast; Mennemeyer & Cyr (1997) studied the uncertainty of health 

treatments; and Fogarty et al. (1996) assessed the risk in exploited marine populations.   
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Table 3: Statistics of the selected Monte Carlo distributions. 

 Uniform Normal Lognormal Triangular 

Mean 
 

μ 
 

 

Median 
 

μ   

Mode any value in [a,b] μ 
 

c 

Probability 

distribution 

function 
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 Uniform Normal Lognormal Triangular 

Cumulative 

distribution 

function 

 

 

 

 

Variance 
 

   

Skewness 0 0  

 

Kurtosis 
 

0 
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Table 4: Parameters for each selected type of distribution. 

Distribution Value of each input parameter 

Uniform 
Minimum (a)  

Maximum (b)  

Normal 
Mean (μ)   

Standard deviation (σ) 

Lognormal 
Geometric mean (μg)    

Geometric standard deviation (σg)  

Triangular 

Minimum (a)  

Mean (b) 

Maximum (c) 

 

Finally, in the case that the probability density functions and the standard deviation (or 

confidence limits) of the uncertain parameters are known, it is feasible to calculate directly 

the range of the obtained results. IPCC (2000) described how to identify and combine 

uncertainty using the shape of the probability density function of emissions factors and 

activity data during the assessment of uncertainty in National Greenhouse Gas Inventories. 

In the case that no data are available, the probability density function can be estimated 

empirically or through expert judgment. Furthermore, the approach of determining the 

probability density functions was introduced in the ExternE program examining the 

uncertainty of various components, such as atmospheric models, dose-response functions 

and monetary valuation (European Commission, 2005).   

 

Fuzzy sets 

The variability of several factors involved in the calculation of the cost-effectiveness 

indicators can be estimated using fuzzy set theory (Diakoulaki et al., 2006). Fuzzy set theory 

is a widespread tool in decision analysis, which is used in order to solve problems 

characterised by uncertain parameters. A fuzzy set contains objects characterised by a grade 

of membership defined usually within the interval [0,1]. Therefore, a fuzzy set A is denoted 

by attributing a membership function μΑ(x) to each element, x, in X:  

 

 

 

 

In the case that the membership degree for an object x equals one, this object belongs 

definitely to fuzzy set A. Membership degrees equal to zero indicate that the object x is 

definitely not included in the set, whereas numbers between zero and one are assigned to 

objects indicating an intermediate situation. 

 

Fuzzy numbers represent uncertain numerical quantities. A fuzzy number A is a fuzzy set 

containing objects x, which are real numbers. In this case the membership function μΑ(x) 

denotes the degree of truth that A takes a value equal to a specific real number, x. Triangular 

Fuzzy Numbers (TFNs) are extensively used to handle uncertainties effectively and can be 

graphically depicted as in Figure 7. 
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Figure 7: Membership function of a Triangular Function Number A = (a1, a2, a3). 
  

TFNs are defined by a triplet of real numbers (a1, a2, a3) and a membership function μΑ(x) 

can be estimated by the following set of equations:  

 

 
 

These equations lead to the conclusion that the real number a2 is assigned the membership 

degree one representing the best possible value of the uncertain data under consideration. 

Alternatively, a1 and a3 correspond to the lower and upper bounds of the set, meaning that 

values outside these borders do not belong to the fuzzy number A. 

 

Based on the extension principle, the concepts of classical algebra are transformed to fuzzy 

mathematics. Assuming that A = (a1, a2, a3) and B = (b1, b2, b3) are two TFNs and k is a crisp 

number, the following operations can be defined: 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

TFNs have the disadvantage that they cannot be easily compared to each other because 

fuzzy numbers do not provide a totally ordered set as is the case with numbers. It is very 

difficult to distinguish the best possible course of action among a set of alternatives defined 

by means of TFNs. The comparison among TFNs can be achieved by using one of the two 

following categories of fuzzy ranking techniques. The first category exploits the inequality 

relations between fuzzy numbers and provides partial or complete pre-orders. These pre-

orders offer very useful information since they allow incomparability between alternatives to 

be identified. A first definition of fuzzy inequality was given by Zadeh (1965) which states 

that given two fuzzy numbers A and B examined with respect to a degree of membership α 

(α-cut), then: 

 

 

 

In other words, Zadeh’s definition of the inequality relation between fuzzy numbers declares 

that in order to conclude that A is smaller than B, the greatest possible value of A must be 

smaller than the smallest possible value of B for a degree of membership α or higher. 

Another concept of fuzzy inequality was proposed by Ramik & Rimanek (1985) and states: 

 

 

 

This definition declares that the fuzzy number B is considered as greater compared to fuzzy 

number A for a degree of membership α (cutting level α) or higher, if the greatest possible 

value of A is smaller than the greatest possible value of B and the smallest possible value of 

A is smaller than the smallest possible value of B. This definition is not too strict and does 

not result in too much incomparability.   

 

An alternative approach to ranking TFNs is to calculate for each TFN an ordinary 

representative value. This is a crisp number which differs from the already defined best 

estimate, a2, since it takes into account the degree of truth associated with each specific real 

value within the support set [a1, a3]. This technique directly provides a complete pre-order of 

the examined alternatives assigned with numerical values which are generally easier for 

decision-makers to use. One technique that can be used is the modification of Yager’s index 

proposed by Kaufman & Gupta (1988). This technique takes into consideration both the 

mean and the spread of the corresponding TFN, while attributing a higher weight to the 

mean value, a2: 

 

 

 

 

The proposed approach for fuzzy sets includes the identification of all uncertain parameters 

involved in the analysis and the expression of these, or the most important ones, as TFNs. In 

the case that some of the parameters are TFNs, calculations must be performed using the 

algebraic operations listed in the previous subsection. Therefore, the cost-effectiveness ratio 

estimates, which will be calculated for each adaptation measure, will finally be obtained in 

the form of a TFN: (a1, a2, a3). The variable a2 is attributed to the best estimation of the cost-

effectiveness value, while the variables a1 and a3 determine the lower and upper limits, 

respectively.  

 

The comparative evaluation of the examined technologies can be achieved by applying a 

fuzzy ranking technique. It is possible either to ‘de-fuzzify’ cost-effectiveness estimates by 
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calculating an ordinary representative value for each TFN according to equations, or to use 

one of the definitions of fuzzy inequalities. In the first case the obtained representative value 

is a crisp number and allows for directly establishing a complete pre-order of the examined 

alternatives. On the contrary, in the case of using fuzzy inequalities the ranking is conducted 

via the pairwise comparison of all examined alternatives. Alternative A is ranked higher 

than alternative B, if the result of this comparison confirms the selected definition of fuzzy 

inequality. This procedure is very likely to lead to partial pre-order illustrating 

incomparability between the examined adaptation measures. In order to reduce 

incomparability, one has to reduce the confidence interval (increase the α-cut). For a degree 

of membership equal to 1 the comparison refers to the mean values a2 of the corresponding 

TFNs and the obtained pre-order is always complete.      

 

Bayesian learning 

The Bayesian learning method is a method for the identification of the best hypothesis, h, 

taking into consideration the evidence of the observed data, D. The Bayesian learning 

method is based on Bayes’ rule, which can lead to the calculation of probabilities derived 

from existing evidence, knowledge or expertise. The estimation of this type of probability 

can be derived by the following equation: 

 

   

 

 

 

where, 

P(h) is the prior probability of hypothesis h, 

P(D) is the prior probability of data D, 

P(h/D) is the probability of h given D, 

P(D/h) is the probability of D given h. 

 

4. The analytical structure of the CEA in CLIMSAVE 
 

4.1 Assumptions of the CEA algorithm 

 

The development of the CEA algorithm was performed taking into consideration all relevant 

issues discussed in Section 3. Specifically, the cost-effectiveness evaluation of the examined 

adaptation measures is based on the ranking of their unitary cost estimates. The unitary cost 

estimates depict the required cost for the implementation of each adaptation measure in 

order to achieve any level of effectiveness. For example, the cost estimates of adaptation 

measures for the protection of shoreline, expressed in €/km of shoreline, present the 

necessary cost for the protection of 1 km length of shoreline.  

 

During the development of the proposed CEA methodology, the potential (i.e. the extent to 

which a measure can address an adaptation issue) for the implementation of each examined 

adaptation measures could not be taken into consideration. The reason for this being that the 

quantification of the potential for the penetration of each adaptation measure is a very 

difficult task, especially in the case of a large number of adaptation measures in various 

sectors. Furthermore, few studies have assessed the potential of adaptation measures on a 

European scale, because it is a complex and difficult procedure. 
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Therefore, the implementation of the CEA algorithm within the framework of CLIMSAVE 

focuses only on the ranking of the unitary cost estimates for the examined adaptation 

measures ignoring the degree of implementation for each adaptation measure. As a result, 

we assume during the calculation that each measure can be implemented infinitely having 

the specific unitary estimate as the cost.   

 

4.2 Adaptation cost database 

 

Taking into account the defined assumptions, the main prerequisite for the implementation 

of the CEA algorithm is costing information for the examined adaptation measures. 

Nevertheless, no previous attempt has been made to collect cost estimates for various 

adaptation measures in different sectors. Identifying this gap, a database was developed 

within the framework of CLIMSAVE. Specifically, an in-depth bibliographical review was 

performed collecting the available unitary cost estimates from the implementation of various 

adaptation measures. A large number of studies have been assessed in order to identify those 

studies with the highest rate of reliability. The main aim of this procedure was the collection 

of unitary cost estimates. Therefore, studies, which refer only to the total cost of adaptation 

measures without additional information regarding the degree of the implementation, were 

excluded from the database.  

 

The developed database contains unitary cost estimates for adaptation measures which can 

be implemented in the six CLIMSAVE sectors: forestry, biodiversity, water, coasts, 

agriculture and the urban environment.  

 

The database has the following main fields for information: 

 

 the type of the adaptation measure, 

 the year of the intervention,  

 the country of the intervention, 

 the mentioned or estimated unitary cost estimates, and  

 the corresponding reference.   

 

Representative images from the database are presented in Appendix A. These images show 

the introductory page of the database, the page with the indicative unitary cost estimates of 

adaptation measures for the protection of coastal areas and the page with the references. 

 

Finally, the IAP includes various soft adaptation measures in addition to hard 'engineering' 

measures. The quantification of cost estimates for these measures is very difficult and few 

studies have attempted to calculate the unitary cost estimates for these measures. Hence, an 

expert judgement approach was used to qualitatively estimate the unitary cost estimates of 

soft adaptation measures into five categories (very high, high, medium, low and neglible; 

see Deliverable D2.4).  
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4.3 Adaptation cost estimates 

 

The adaptation measures, whose cost estimates were identified and recorded in the database, 

were assessed and the most representative of them were selected for use with the CEA 

algorithm. These unitary cost estimates refer exclusively to capital costs, which are 

necessary for the development and implementation of these adaptation measures. Table 5 

presents the selected adaptation measures including their minimum, mean and maximum 

unitary cost estimates. All values have been expressed in €2010 for the EU-27. 

 

For the estimation of more representative cost estimates, an adjustment of the selected cost 

data was performed in relation with the Purchasing Power Parity Index (PPPI) and the 

Consumer Price Index (CPI) (Pattanayak et al., 2002). The PPPI Index is preferred over 

simple currency conversion, as it takes into consideration both the currency exchange rate 

and the prices of goods from one country to another. Simple currency conversion can 

underestimate or overestimate the value as the rates of exchange depends on various factors, 

such as each country's interest rates, financial flows, supply and demand of currency, etc. 

Subsequently, the utilisation of the Consumer Price Index (CPI) takes into account the effect 

of inflationary trends during the calculation.  

 

The equation used for the transposition of individual cost estimates from the original country 

level to the average EU-27 level with 2010 as the baseline year is as follows: 

 

   

 

 

4.4 Assessment of cross-sectoral effects 

 

A major aim of the CLIMSAVE project is the assessment of cross-sectoral effects from the 

implementation of adaptation measures. First, a detailed literature review was performed for 

the qualitative estimation of cross-sectroral effects and second, the expert judgment 

elicitation approach was applied for the quantitative evaluation of the cross-sectroral effects. 

The implementation of this method was performed through the development of the 

CrossAdapt tool and the corresponding methodology. 

 

Representative images of this tool are presented in Appendix B. These images show the 

introductory page of the tool, the procedure for the quantification of cross-sectoral effects 

for an indicative adaptation measure (wetland creation) and the questions assisting the 

potential user to express her opinion regarding the cross-sectoral effects of the examined 

adaptation measure. A brief description of CrossAdapt tool is presented in the following 

section.  
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Table 5: Cost estimates for the selected adaptation measures grouped according to the adaptation sliders on the IAP. 

Flood protection upgrade Unit Minimum Mean Maximum 

Beach nourishment €/m 87 1,562 3,460 

Breakwaters €/m 173 3,461 16,407 

Bulkheads €/m 307 611 6,563 

Closure dams €/m 5,204 15,611 26,019 

Concrete floodwall €/m 3,296 3,916 4,639 

Dike or levee €/m 569 8,070 22,267 

Dune restoration & stabilisation €/m 3 145 788 

Gabions €/m 87 476 865 

Geotextiles €/m 35 104 173 

Groynes €/m 166 3,935 10,302 

Protected embankment €/m 4,304 5,380 6,456 

Revetments €/m 320 2,068 5,190 

Storm surge barriers €/m 6,071 1,609,076 5,129,534 

Seawalls €/m 300 7,704 16,407 

Beach drainage €/m 121 302 483 

Retreat of flood defences Unit Minimum Mean Maximum 

Managed realignment €/m 1,092 1,226 1,361 

Coastal wetland vegetation cover & restoration €/m 3 24 55 

Marshland creation €/m2 3 12 26 

Marshland stabilization €/m2 0.1 1 2 

Coastal wetland vegetation cover & restoration €/m2 0.3 0.3 0.4 

Saltmarsh restoration and creation €/m2 0.02 1 13 

Wetland restoration and creation €/m2 0.02 19 94 

Implement flood resilience measures Unit Minimum Mean Maximum 

Automatic barriers €/m2 204 331 458 
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Raised thresholds €/m2 31 34 38 

Storm porch €/m2 140 146 153 

External wall render and facing €/m2 25 38 51 

Airbrick elevation €/m2 64 70 76 

Integral automatic airbrick €/m2 36 38 41 

External doors €/m2 19 41 64 

Replacement concrete floor & finishes €/m2 140 153 166 

Internal wall render & skirting €/m2 51 76 102 

Internal doors €/m2 8 10 12 

Raised services €/m2 8 17 25 

General resilient house (internal walls render, 

doors, electrics,  floor finish) 

€/m2 
611 688 764 

Change in protected area forest Unit Minimum Mean Maximum 

Assuring species habitat in a forest €/ha 123 125 127 

New tree plantation €/ha 292 1,294 2,844 

Expanding protected areas €/ha 5 1,022 3,191 

Management costs of Natura 2000 network €/ha/yr 57 77 96 

Management costs of protected areas €/ha/yr 3 51 272 

Change in protected area agriculture Unit Minimum Mean Maximum 

Expenditure on biodiversity conservation - More 

densely settled areas 
€/ha/yr 79 99 119 

Habitat protection and restoration €/ha 1,096 4,620 8,102 

Lowland grassland creation and restoration €/ha 3,198 7,969 12,942 

Expanding protected areas €/ha 5 1,022 3,191 

Management costs of Natura 2000 network €/ha 57 77 96 

Management costs of protected areas €/ha 3 51 272 

Peatlands restoration €/ha 274 475 675 

Restoration of blanket bog €/ha 274 4,057 8,162 
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Set-aside Unit Minimum Mean Maximum 

Convert land in arable or intensive grass to 

extensive grass 
€/ha 724 904 1,085 

Extensification grasslands €/ha 185 302 419 

New tree plantation €/ha 292 1,294 2,844 

Lowland grassland creation and restoration €/ha 3,198 7,969 12,942 

Reducing diffuse source pollution from 

agriculture 
Unit Minimum Mean Maximum 

Controlled release fertilisers €/ha/yr 31 82 148 

Fertiliser recommendations €/ha 4 4 5 

Fertiliser spreader calibration €/ha 13 17 20 

Fertilizer reduction €/ha/yr 17 22 26 

Improved timing of mineral fertiliser N 

application 
€/ha/yr 18 22 26 

Improved timing of slurry and poultry manure 

application 
€/ha/yr 8 10 12 

Manure management plans & waste audits €/ha 9 11 13 

Mulching €/ha 76 111 145 

N efficiency calculation €/ha 2 2 3 

Nitrification inhibitors €/ha/yr 31 54 78 

Precision farming (rain-fed) €/ha 7 130 462 

Reduce N fertiliser €/ha/yr 42 53 63 

Use of on-farm N-efficiency €/ha/yr 6 8 9 

Change Forest Management Unit Minimum Mean Maximum 

Agricultural and forestry land management €/ha 119 149 179 

Annual maintenance of forests €/ha/yr 97 121 145 

Fire suppression €/ha 0.2 3 6 

Forest rehabilitation €/ha 363 2,950 9,298 
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Plant climate-resilient tree species Unit Minimum Mean Maximum 

Afforestation €/ha 254 923 2,540 

Reforestation €/ha 890 1,857 5,128 

Plantation of drought tolerant species €/ha 23 203 431 

Plantation of productive species €/ha 108 135 162 

Woodland creation €/ha 1,347 4,206 9,259 

Change in bioenergy production Unit Minimum Mean Maximum 

Agroforestry €/ha 272 895 1,557 

Biodiesel €/ha 260 477 694 

Water savings due to technological change Unit Minimum Mean Maximum 

Aquifer recharge €/m3 0.03 0.44 0.74 

Dams and reservoir €/m3 0.02 0.08 0.23 

Desalination sea water thermal €/m3 0.12 1.58 7.25 

Desalination sea water reverse osmosis €/m3 0.29 1.51 12.09 

Desalination brackish water €/m3 0.15 1.22 8.32 

Desalination brackish water reverse osmosis €/m3 0.09 1.39 8.32 

Rainwater harvesting €/m3 0.03 0.46 2.25 

Recycling €/m3 0.03 0.45 1.24 

Wastewater reuse €/m3 0.03 0.17 0.31 

Water supply systems creation, connection and 

rehabilitation 

€/m3 
0.01 0.06 0.16 

Change in agricultural yields Unit Minimum Mean Maximum 

Agricultural Intensification €/ha 199 343 487 

Agroforestry €/ha 272 895 1,557 

Conservation tillage - minimum tillage €/ha/yr 88 123 145 

Conservation tillage - no tillage €/ha 83 152 246 

Controlled release fertilisers €/ha/yr 31 82 148 

Cover crops €/ha 43 118 292 
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Drainage construction (rain-fed) €/ha 37 46 55 

Extensification grasslands €/ha 185 302 419 

Fertiliser recommendations €/ha 4 4 5 

Fertilizer reduction €/ha/yr 17 22 26 

Genetic crop development (rain-fed) €/ha 10 16 22 

Improved germplasm (rain-fed) €/ha 4 5 6 

Improved timing of mineral fertiliser N 

application 
€/ha/yr 18 22 26 

Improved timing of slurry and poultry manure 

application 
€/ha/yr 8 10 12 

Integrated plant stress management (rain-fed) €/ha 6 42 77 

Legume - biological nitrogen fixation €/ha 3 3 4 

Legume - fertilizer N use €/ha 62 79 96 

N efficiency calculation €/ha 2 2 3 

Nitrification inhibitors €/ha/yr 31 54 78 

Precision farming (rain-fed) €/ha 7 130 462 

Reduce N fertiliser €/ha/yr 42 53 63 

Use of on-farm N-efficiency €/ha/yr 6 8 9 

Yield map production €/ha 15 21 27 

Change in agricultural mechanisation Unit Minimum Mean Maximum 

Agricultural Intensification €/ha 199 343 487 

Conservation tillage - minimum tillage €/ha/yr 724 904 1,085 

Conservation tillage - no tillage €/ha 83 152 246 

Precision farming (rain-fed) €/ha 7 130 462 

Yield map production €/ha 15 21 27 

Change in irrigation efficiency Unit Minimum Mean Maximum 

Irrigation systems-rehabilitation €/ha 1,109 3,767 9,057 

Drainage construction (irrigated) €/ha 10 16 22 



33 

Genetic crop development (irrigated) €/ha 5 22 38 

Improved germplasm (irrigated) €/ha 6 42 77 

Integrated plant stress management (irrigated) €/ha 238 350 462 

Precision farming (irrigated) €/ha 111 270 462 

Sprinkler irrigation €/ha 154 1,801 3,373 

Irrigation scheduling €/ha 15 38 62 

Piped water conveyance €/ha 390 527 769 

Drip irrigation €/ha 769 2,755 5,501 

Sprinkler conversion to microsprayer €/ha 389 2,589 4,345 

Canallining €/ha 208 296 385 
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4.4.1 The CrossAdapt tool 

 

Introduction 

The purpose of the CrossAdapt weighting scheme is to identify and quantify cross-sectoral 

effects of adaptation measures. It attempts to answer the following questions: (1) Do sector-

specific adaptation investments generate (positive or negative) auxiliary effects on 

(neighbouring) sectors? and (2) if yes, how can we then identify and quantify them? This is 

an important question for the accuracy of adaptation costing and, therefore, for the design of 

realistic adaptation plans. To our knowledge, the cross-sectoral impacts of adaptation 

measures are rarely taken into consideration. We therefore need to rely on expert judgement 

in order to accomplish this task.  

 

Our approach is simple: we assume a direct relationship between the effectiveness of an 

adaptation measure in a specific sector and its auxiliary effects in other sectors. For 

example, a seawall designed to protect the coastline also protects fisheries to a degree that 

varies between 0% and 100%. CrossAdapt contains our idea of how to operationalise the 

above approach: it aims at eliciting expert judgement on the central, minimum and 

maximum value of intensity of cross-sectoral effects in specific sectors of interest.  

 

Each file addresses a specific sector and each worksheet within a file refers to a specific 

adaptation measure for this sector. For each adaptation measure (e.g. wetland creation) the 

possible cross-sectoral effects are given (e.g. on biodiversity, agriculture and water). For 

each cross-sectoral effect - by moving the cursor to the right side of the relevant box (see 

Appendix B) – an expert is asked to state their judgement on five topics:  

 

 Type of impact [positive or negative], 

 Intensity - Central value [0% to 100%], 

 Intensity - Minimum value: [0% to 100%], 

 Intensity - Maximum value: [0% to 100%], 

 Degree of certainty: [very low to very high]. 

 

For the completion of CrossAdapt it is important to note the following points: 

 

1. Delimitation of sectors: The sectors of interest are those defined within the 

CLIMSAVE Integrated Assessment Platform: coasts, biodiversity, agriculture, water, 

forests and urban. The water sector includes adaptation measures for water quantity 

and quality problems in addition to flooding. 

 

2. Selection of measures: We constrain ourselves to adaptation measures and their 

cross-sectoral effects that have been identified in the corresponding Adaptation and 

Mitigation Review (Task 4.3; Deliverable D4.2). 

 

3. Scale and size of intervention: The scale of intervention is important for judging the 

importance of effects. For example, transforming 1000 ha of agricultural land to 

wetlands might have an important effect at a local, but not at a national scale. 

CrossAdapt assumes an ‘average’ adaptation intervention at the local scale. 
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4. Intensity: Intensity denotes the importance of cross-sectoral effects expressed as 

percentage change in the state of the sector affected. Intensity is the central pillar in 

the construction of CrossAdapt. Intensity is expressed as a mean (e.g. the most 

probable intensity), a minimum and a maximum value. We acknowledge that 

‘effects’ are mostly location specific; and consequently ‘intensity’ is also location 

specific. Nevertheless, we cannot control for this parameter unless we make the 

weighting scheme very complicated.  

 

Elicitation process 

Following Morgan et al. (2006), a structured elicitation of each expert’s judgment was 

selected provided that neither consensus nor a mechanism for iterative communication 

between experts was required. This approach also ensured that the expert judgments 

provided were free of interactions, since the reactions of other experts present in interactive 

groups can provoke the so-called ‘social pressure’ bias (Meyer & Booker, 2001). 

  

The process targets the effective elicitation of the type of cross-sectoral effect (binary 

response, i.e. positive or negative) and estimates of the intensity of effects in specific 

sectors. Furthermore, in order to tackle features of uncertainty that may not be captured in 

probability theory (Hall et al., 2007), the experts’ subjective probability distributions for the 

intensity of cross-sectoral effects were provided in the form of fuzzy numbers based on 

fuzzy set theory (Zadeh, 1965; 1987). 

  

A fuzzy number is defined in the universe R as a convex and normalized fuzzy set. In this 

particular case, the experts were asked to provide their estimates determining the minimum 

[0% to 100%], the central (i.e. most plausible) [0% to 100%] and the maximum [0% to 

100%] value in the form of a triangular fuzzy number T = (a, b, c) with membership 

function μΑ(x), defined on R as follows:      
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where [a,c] is the supporting interval and the point  (b,1) is the peak (Figure 8). 

 

 
Figure 8: Membership function μ of the triangular fuzzy number. 
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Evaluating and weighting the existing level of information 

In order to evaluate uncertainty and ambiguity associated with the current level of scientific 

knowledge so as to weight the final estimates if required, two different measures were 

adopted. The first one is based on an ‘objective’ measure, namely the relative agreement 

degree (RAD) between the experts, whereas the second relies on the self-evaluation of 

experts, who express their degree of certainty using a five-point Likert scale (from “very 

low” to “very high”). The approaches used are described below. 

 

‘Objective’ weighting of uncertainty 

The agreement between the experts was measured by means of the relative agreement 

degree index, which is usually estimated in order to combine individual subjective estimates 

in the context of the similarity aggregation method (Hsu & Chen, 1996). Each Expert Ei 

provides a triangular fuzzy number  ̃i with membership function   ̃ 
(x). Suppose two 

experts Ei and Ej have their estimates  ̃i and  ̃j. If there is an agreement between these two 

experts there is a consistent area between expert i and expert j, i.e.: 

 

∫    {  ̃ 
( )   ̃ 

( )}  
 

. 

 

The agreement degree S( ̃i,  ̃j) between the two experts is estimated by the proportion of 

the consistent area to the total area, as follows (Hsu & Chen, 1996): 
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The higher the percentage of overlap, the higher the agreement degree. If two experts have 

the same estimates, then S( ̃i,  ̃j) = 1, and if two experts have completely different 

estimates, then S( ̃i,  ̃j) = 0. After all the agreement degrees between the experts Ei have 

been measured, an agreement matrix (AM) is constructed, which provides insight into the 

agreement between the experts (ibid.): 
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where Sij = S( ̃i,  ̃j), for i ≠ j and Sij = 1, for i = j. 

 

The average agreement degree of expert Ei is estimated by:  
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Finally, the relative agreement degree (RAD) of expert Ei, which can also be used as a 

weighting factor for the aggregation of experts’ opinions, is given by: 

 

   (  )  
 (  )

∑  (  )
 
   

 

 

 

‘Subjective’ weighting of uncertainty 

As mentioned, the second approach uses the subjective opinion of the experts involved in 

the survey. More specifically, expert Ei expresses her/his certainty as to the accuracy of 

her/his estimate in linguistic form, using a five-point Likert scale, namely: “Very low”, 

“Low”, “Medium”, “High” and “Very high” certainty. 

 

In order to determine the ‘certainty’ relative weight of expert Ei, Saaty’s pair-wise 

comparison approach is implemented (Saaty, 1977). Linguistic pair-wise comparisons of 

certainty values are converted to the numerical pair-wise comparisons presented in Table 6, 

by means of the given scale represented in Table 7.  

 

Table 6: Pair-wise comparisons of certainty intensity values. 

 

Very low Low Medium High Very high 

Very low 1 0.333 0.200 0.143 0.111 

Low 3 1 0.333 0.200 0.143 

Medium 5 3 1 0.333 0.200 

High 7 5 3 1 0.333 

Very high 9 7 5 3 1 

 

Table 7: The scale of the certainty intensity value. 

Certainty intensity eij Definition 

1 Equal importance of i and j  

3 Weak importance of i over j  

5 Strong importance of i over j  

7 Demonstrated importance of i over j  

9 Absolute importance of i over j  

 

The matrix of pair-wise comparisons E = [eij] that represents the intensities of experts’ 

certainty preference between individual pairs of experts (Ei versus Ej, for all i, j = 1, 2, …, n) 

is, as follows: 
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Finally, the normalised relative weight (RW) of expert Ei is estimated according to the 

following equation: 

 

RWi = ri /(r1 + r2 + … + rn) 

 

where ri is the geometric mean of each row, i.e.: 
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Aggregation of experts’ distributions and defuzzification 

In general, there are three main approaches when faced with differing expert opinions: (i) 

propagate each expert’s distribution separately; (ii) require the experts to create a single 

consensus distribution; and (iii) combine the expert opinions in some way. Nevertheless, 

there is not a consensus on how to deal with this issue in the context of integrated 

assessment models (Webster & Sokolov, 2000). Requiring experts to create a commonly 

accepted distribution model may be possible in group consensus expert elicitation 

approaches or iterative processes, such as the Delphi method. However, it is not appropriate 

in individual expert judgments, especially when interactions between the experts could bias 

the results. Using each individual expert’s opinion as model inputs and estimating a range of 

results from the model also presents important difficulties. As mentioned by Baker & Peng 

(2012), it might be possible in theory to run every combination of expert’s results; yet, it is 

largely impractical in reality. For instance, if there are n experts per category and m 

categories, then a total of n
m
 probability distributions are created. Furthermore, as quoted in 

Webster & Sokolov (2000), Casman et al. (1999) note the practical limitations to the strict 

Bayesian approach of specifying all possible hypotheses with axiomatically correct priors in 

commenting that “…many Bayesian theorists would advise the analyst to specify the 

(perhaps infinite) set of all priors and models which fit the constraints imposed by whatever 

limited knowledge one has…a prescription that one’s analytical formulation should grow in 

complexity and computational intensity as one knows less and less about the problem, will 

not pass the laugh test in real-world policy circles…”. 

 

Bearing in mind the above-mentioned remarks as well as the scope and needs of the tool, the 

approach of combining the experts’ opinions was adopted following previous research 

efforts (e.g. Titus & Narayanan, 1996; Webster & Sokolov, 2000; Baker & Peng, 2012). 

Combining the experts’ opinions into a single distribution of values via mathematical 

aggregation can prove a difficult analytical problem, as many of the existing techniques 

impose restrictions on the data, the experts, the analyst, and on the interpretations of results 

(Meyer & Booker, 2001). Most the aggregation methods to date are based on fuzzy 

preference relations (e.g. Kacprzyk et al., 1992; Ishikawa et al., 1993; Hsu & Tsen, 1996; 

Lu et al., 2006). The individual fuzzy sets of experts’ opinions are aggregated point by point 

into the aggregation function. The individual memberships associated with expert judgments 

are then aggregated using operators such as the mean, maximum, minimum, etc., resulting in 

an aggregated membership value, which is located in the aggregated function, to finally 

determine the expert group final judgment (Vanícek et al., 2009). Nevertheless, typical t-

norm (intersection) and t-conorm (union) operators result in a very restricted representation 

of the wide range of experts’ beliefs. Thus, it is inappropriate to combine different 
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distributions into one summary distribution if this obscures differences between two or more 

experts. These poorly managed limited ranges of outcomes may inadvertently propagate 

uncertainty and limit the ability of policy-makers to make strategic hedges against risky 

outlier events (Schneider & Kuntz-Duriseti, 2002). 

 

Two alternative approaches were implemented in order to address these concerns, namely 

the Fuzzy Averaging approach and the Maximum Entropy approach. The Fuzzy Averaging 

technique is widely used in forecasting and decision-making applications of fuzzy logic, as 

it provides the supporting interval for which the membership function μΑ(x) has maximum 

membership degree (Bojadziev & Bojadziev, 2007). The Maximum Entropy approach, on 

the other hand, allows for the wider range of “judged” uncertainty elicited by the experts to 

be considered and is a common measure of information in modern communications theory 

(Baecher & Christian, 2003).  

 

The Fuzzy Averaging approach 

Consider n triangular numbers Ai = (a1
(i)

, am
(i)

, a2
(i)

), with i = 1, 2,…, n, provided by the 

experts. The triangular average Aave = (m1, mM, m2) of all Ai is estimated, according to the 

equation: 
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If the estimates provided by the experts have different importance expressed by the weights 

wi, then the weighted triangular average is introduced by the formula 
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Following Hsu & Chen (1996), the weight wi of the expert Ei (i = 1, 2,…, n) is  estimated by 

the relative agreement degree (RAD) and the normalised relative weight (RW) of the expert, 

as follows: 

 

wi = β * RADi + (1 – β) * RWi, with 0 ≤ β ≤1 defined by the analyst 

 

The Maximum Entropy approach 

The idea behind Maximum Entropy is to formulate a distribution for the data such that the 

distribution maximises the uncertainty in the data subject to known constraints (Meyer & 

Booker, 2001). As Gay & Estrada (2010) note, the Maximum Entropy Principle is “…a 

useful tool for constructing probabilistic climate change scenarios that are the least biased 

estimates possible, consistent with the information at hand (including expert or decision-

maker judgment) and that maximise what is not known”. 

 

  



40 

This definition of entropy, introduced by Shannon (1948), resembles a formula for a 

thermodynamic notion of entropy. For a continuous probability density function p(x) on an 

interval I, its entropy is defined as: 

 ( )   ∫  ( )    ( )   

 

 

 

Using Shannon’s entropy measure, Jaynes (1957) showed that the maximum entropy 

estimate is the least biased estimate possible on the information at hand and it maximises the 

uncertainty subject to the partial information that is given. This means that the choice of any 

other distribution will require making additional assumptions unsupported by the given 

constraints (Duracz, 2006). A direct derivation of the maximum entropy distribution 

involves solving a system of non-linear equations, the solution of which involves variational 

calculus using the Lagrange multiplier method. The maximum entropy distribution can help 

assign probability distributions given certain constraints. For instance, when only the lower 

and upper bounds for an uncertain parameter are known, the principle of maximum entropy 

would indicate a uniform distribution. When the minimum, maximum and mode values are 

given, the beta distribution that maximises the entropy is chosen (Harr, 1987, quoted in 

Mishra, 2002).  

 

In order to better represent the divergence of opinions and the uncertainty involved in 

estimating the cross-sectoral effects of adaptation measures, the minimum and maximum 

values provided by the experts were in this case combined with equal weight assigned to 

each expert. Thus, expert judgments are aggregated to construct a uniform distribution, 

using the minimum and maximum values of all experts as follows: 

 

 (   )        
       

   
 

where       
  is the minimum of the minimum values elicited by the experts, and  

      
  is the maximum of the maximum values elicited by the experts. 

 

4.4.2 Quantification of cross-sectoral effects  

 

The quantification of cross-sectoral effects is performed through the calculation of an 

overall indicator of the capital cost of each adaptation measure, which reflects all the cross-

sectoral effects of the examined measure. The cost of each adaptation measure can be 

considered as an indication of the total damages because its implementation is vital in order 

to adapt the upcoming damages in the case that it is not be implemented.  

 

For example, wetland creation has impacts on the coastal sector, which is considered as the 

main sector here, but also on biodiversity, agriculture and water. The effects of wetland 

creation for the coastal sector are 100% positive. An expert might use CrossAdapt to express 

his judgement that the effects of wetland creation on water are positive and equal to 20% of 

the triggered changes in the coastal sector. Correspondingly, the effects on biodiversity are 

positive and equal to 50% and the effects on agriculture are negative and equal to 60%. 
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In the case of fuzzy triangular averages, the cross-sectoral indicator of adaptation measure i 

in sector j across k sectors is estimated as follows: 
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where: CSEffi is the cross-sectoral effect of adaptation measure i in sector j  

CCi is the Capital cost of adaptation measure i in sector j 

   
  is the minimum average intensity of adaptation measure i in sector k (in %) 

   
  is the most plausible average intensity of adaptation measure i in sector k (in %) 

   
  is the maximum average intensity of adaptation measure i in sector k (in %) 

 

If the Maximum Entropy approach is used, the cross-sectoral indicator of adaptation 

measure i in sector j is estimated as follows: 
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where    
  is the minimum intensity of adaptation measure i in sector k (in %) 

   
  is the maximum intensity of adaptation measure i in sector k (in %) 

 

If required, the fuzzy cross-sectoral indicators can be represented by a crisp value after 

defuzzification and, thus, the expected value and variance of the fuzzy number can be 

estimated using fuzzy sets and integration theory (e.g. Liu & Liu, 2002; Bojadziev & 

Bojadziev, 2007).  

 

The estimation of the cross-sectoral indicators was performed through conducting a survey. 

The survey consisted of three parts, a brief description of which follows: 

 

Step 1: Development of CrossAdapt tool and design of the survey 

The development of a specific tool should help the elicitation of experts’ judgments 

regarding the quantification of the cross-sectoral effects. Therefore, the CrossAdapt tool was 

developed and modified for each sector to include the specific adaptation measures as 

defined within the adaptation and mitigation review (Deliverable D4.2). For each adaptation 

measure a brief definition of the examined measure was specified providing a common basis 

for evaluation by the experts. After completion of the CrossAdapt tool, the survey 

specifications were established taking into consideration potential emerging problems. 

 

Step 2: Pilot phase of the survey 

The functionality of the CrossAdapt tool was assessed using a pilot survey. The CrossAdapt 

tool was iteratively tested and modified in order to improve its effectiveness. Continuous 

trials were performed through conducting personal interviews with experts from various 

sectors. The aim of this pilot phase was to identify potential issues, which could hamper the 

evolution of the survey. 
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Step 3: Main phase of the survey 

The implementation of the survey was performed mainly by means of personal interviews. 

This approach was selected because it allowed clarifications to be provided to experts which 

assisted the completion of the CrossAdapt tool in an appropriate way. Nevertheless, due to 

time and budget constraints, some questionnaires were sent to experts by email and the 

interview was carried out by telephone.  

 

A crucial parameter for the successful implementation of the survey was the identification of 

a representative sample of experts. The sample of experts consisted of modellers and 

physical scientists for the examined sectors. The initial list of experts was based on the 

partners of the CLIMSAVE project, and various other experts with relevant scientific 

background. Initially, a large number of experts were approached, and finally 56 of them 

participated in the survey and completed the CrossAdapt tool questionnaires. The number of 

stakeholders, who participated in the survey is presented in Table 8 for each sector. 

 

Table 8: Number of stakeholders who participated in the expert judgement procedure. 

Sector Number of stakeholders 

Coasts 10 

Urban 4 

Biodiversity 13 

Forests 11 

Water 14 

Agriculture 4 

 

4.4.3 Estimation of cross-sectoral effects  

 

The collected data within the CrossAdapt tools were analysed in order to calculate the cross-

sectoral indicators for each adaptation measure according to the methodological approach 

described. The calculated values from the Basic analysis are presented in Table 9. Table 9 

also includes the cross-sectoral indicators, which were estimated by implementing two 

‘extreme’ weighting factors of uncertainty, i.e. with β value equal to 0 and 1. Specifically, 

the triangular distributions ‘objective’ and ‘subjective’ measures of uncertainty are 

presented, which resulted from the two different ways of weighting as described previously. 

 

The wide range of some of the estimates presented in Table 9 reflects the divergent views of 

experts on a number of adaptation and cross-sectoral issues. The main reasons for this 

differentiation consist of the misconception that when experts are given the same data they 

will reach the same conclusions, gaps in existing knowledge, perceiving the question 

differently, having different scientific and professional experience and approaches to analyse 

the information provided (Meyer & Booker, 2001). 

 

In accordance with the literature (e.g. World Bank, 2010; Harrison et al., 2012), the experts 

stated that they were not aware of research efforts or practical applications dealing with 

cross-sectoral impacts of adaptation strategies. Furthermore, experts with different scientific 

backgrounds responded differently in some cases, providing however an equally acceptable 

justification for their opinion. Finally, an issue that was also pointed out by the experts was 

the ‘contradicting’ effect of specific actions described under an adaptation measure. 
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Table 9: Cross-sectoral indicators for the examined sectors. 

 

Basic analysis Objective analysis Subjective analysis 

Min Mode Max Min Mode Max Min Mode Max 

C
o

a
st

s 

Wetland Creation 7% 58% 111% 39% 105% 170% 13% 61% 113% 

Managed Realignment 44% 135% 197% 71% 171% 242% 63% 160% 234% 

Managed Retreat 44% 112% 163% 52% 119% 172% 31% 109% 170% 

Low Crested Structures 74% 87% 106% 58% 72% 95% 84% 98% 119% 

Beach Nourishment 87% 102% 115% 55% 75% 94% 88% 105% 119% 

Storm-surge barriers 11% 54% 97% 0% 52% 107% -1% 42% 93% 

U
rb

a
n

 

Green roofs 35% 70% 110% 55% 86% 117% 30% 64% 103% 

Urban intensification -23% 20% 70% -26% 17% 69% -30% 14% 66% 

Green infrastructure -80% -10% 60% -50% 14% 77% -99% -29% 47% 

Rainwater harvesting 0% 40% 68% -13% 37% 68% -8% 32% 60% 

B
io

d
iv

er
si

ty
 

Habitat restoration -18% 27% 78% -9% 53% 109% -24% 16% 65% 

Networks 88% 118% 144% 90% 119% 145% 95% 127% 153% 

Corridors 76% 84% 91% 92% 94% 97% 79% 90% 100% 

Protected areas 49% 62% 78% 39% 53% 70% 31% 44% 61% 

F
o

re
st

s 

Use of chemical control methods 144% 181% 221% 165% 222% 287% 192% 254% 317% 

Afforestation & reforestation 4% 73% 144% -39% 42% 118% -17% 58% 137% 

Use of harvesting & thinning 92% 113% 135% 117% 137% 158% 99% 121% 146% 

Protected areas 26% 46% 65% 20% 43% 61% 21% 42% 60% 

Road building in forests 123% 138% 158% 123% 138% 158% 131% 146% 168% 

Prescribed burning 85% 106% 130% 87% 111% 137% 63% 91% 119% 

Removal of dead trees 135% 155% 176% 136% 159% 181% 139% 159% 179% 

W
a

te
r
 Demand management -11% 34% 85% -18% 34% 94% -24% 22% 78% 

Increased storage -126% -45% 49% -161% -67% 49% -142% -51% 49% 

Increased infiltration -104% -46% 26% -140% -72% 14% -148% -79% 9% 



44 

Reduced flood impact -98% -36% 43% -159% -89% 13% -147% -81% 4% 

Reduced flow rate -5% 36% 85% -17% 34% 94% -20% 28% 79% 

Creation of wetlands -4% 38% 81% -38% 13% 66% -13% 31% 81% 

A
g

ri
cu

lt
u

re
 

Disaster early-warning system -8% 58% 118% -70% 6% 64% -24% 54% 116% 

Intra-basin water transfer  60% 140% 215% 86% 151% 223% 57% 135% 212% 

Integrated coastal management 0% 65% 120% 45% 105% 168% -42% 43% 101% 

Flood prevention standards 58% 85% 108% 35% 65% 90% 63% 84% 105% 

Conservation-no tillage 25% 53% 93% 33% 57% 93% 34% 55% 91% 

Flood prevention infrastructure 68% 93% 120% 81% 107% 135% 68% 90% 116% 

Genetic modified organics 90% 103% 140% 92% 105% 144% 90% 102% 144% 

Breeding selection 73% 83% 95% 63% 77% 93% 63% 77% 93% 

Water storage 93% 100% 115% 100% 100% 100% 85% 100% 130% 

Weed and pest control 110% 123% 135% 105% 115% 130% 120% 142% 160% 

Use of different species  93% 108% 120% 110% 125% 145% 66% 93% 106% 

Planting time adjustment 93% 103% 118% 80% 90% 100% 99% 115% 145% 

Varieties of crop planted 95% 105% 115% 80% 90% 100% 90% 103% 115% 

Water-saving irrigation 68% 83% 103% 35% 60% 90% 55% 75% 105% 

Water and irrigation infrastructure 63% 78% 93% 48% 68% 89% 48% 68% 85% 



45 

 

The analysis of the estimates was performed using the average AE values of the experts for 

each sector, where the cross-sectoral effect was identified. Setting an arbitrary ambiguity 

threshold score of average AE 10% or lower, the most ambiguous adaptation measures were 

identified and are presented in Table 10. The results show that the ambiguity effect is lower 

in the sectors of urban, forests and biodiversity. Nevertheless, the analysis leads to higher 

ambiguity in the sectors of water, agriculture and coasts. Table 11 depicts the ambiguity 

effect of each examined adaptation measure for each sector separately. The measures “Intra-

basin water transfer”, “Reduced flow rate”, “Managed Realignment” and “Managed 

Retreat” have the highest ambiguity effect in comparison with the other adaptation 

measures. 

 

4.5 Operationalising the CEA and uncertainty analysis in CLIMSAVE 

 

As mentioned previously, the CEA algorithm ranks the unitary cost estimates of the 

examined adaptation measures. Regarding the uncertainty analysis methods, the Monte 

Carlo technique and fuzzy sets analysis were selected. Their selection was determined by 

assessing various criteria including the availability of data and the simplicity of the 

calculation. Triangular and uniform distributions were selected for the implementation of the 

Monte Carlo technique. Correspondingly, the fuzzy sets analysis was performed through the 

implementation of the representative value and Ramik-Rimanek approaches. 

 

The CEA and uncertainty analysis were operationalised by creating a dynamic link library 

(DLL) containing the necessary algorithms (Figure 9). The DLL requires the user to specify 

the following inputs for the implementation of the CEA and uncertainty analysis: 

 

 Membership function (for the implementation of fuzzy sets analysis), 

 Minimum, mean and maximum cost of each adaptation measure from the cost 

database; see Table 5 (for the implementation of fuzzy sets analysis and Monte 

Carlo simulation with triangular and uniform distributions). 

 

For each run of the CEA algorithm the results for both the basic and uncertainty analysis are 

calculated and summarised. The Monte Carlo analysis is calculated using the mean unitary 

cost estimate from the corresponding estimated mean values as derived by the 1,000 

performed iterations.  
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Table 10: Identification of the most ambiguous adaptation measures for each sector. 

 
Agriculture Urban Water Biodiversity Coasts Forests 

Agriculture   

Intra-basin water 

transfer  

Disaster early-warning 

systems 
Intra-basin water transfer  

Disaster early-

warning systems 
Intra-basin water transfer  

  Intra-basin water transfer  
Integrated coastal 

management 

Intra-basin water 

transfer  
  

  
Integrated coastal 

management 

Flood prevention 

infrastructure 
    

  
Flood prevention 

standards 

Genetically modified 

organisms 
    

    Weed and pest control     

    Use of different species      

    Water-saving irrigation     

Urban Urban intensification           

Water 

Demand management   

  

Reduced flood impact Increased storage Demand management 

Increased infiltration   Reduced flow rate Reduced flow rate Increased infiltration 

Reduced flow rate         

Biodiversity 
    Corridors 

  
Habitat restoration Networks 

        Protected areas 

Coasts 

  Managed realignment Managed realignment Managed realignment 

  

Managed realignment 

  Managed retreat Managed retreat Managed retreat   

    Storm-surge barriers Low crested structures   

      Beach nourishment   

      Storm-surge barriers   

Forests 

Chemical control 

methods 

Afforestation 

Reforestation 
  Use of harvesting & thinning   

  

      Prescribed burning   
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Table 11: Ambiguity effect of the examined adaptation measures for each sector. 

 
  Agriculture Urban Water Biodiversity Coasts Forests 

A
g

ri
cu

lt
u

re
 

Disaster early-warning system 

 

 
Χ 

 
Χ 

 
Intra-basin water transfer  Χ Χ Χ Χ Χ 

Integrated coastal management 
 

Χ Χ 
  

Flood prevention standards 
 

Χ 
   

Conservation-no tillage 
     

Flood prevention infr 
  

Χ 
  

Genetic modified organics 
  

Χ 
  

Breeding selection 
     

Water storage 
     

Weed and pest control 
  

Χ 
  

Use of different species  
  

Χ 
  

Planting time adjustment 
     

Varieties of crop planted 
     

Water-saving irrigation 
  

Χ 
  

Water and irrigation infr 
     

U
rb

a
n

 

Green roofs 
 

 

    
Urban intensification Χ 

    
Green infrastructure 

     
Rainwater harvesting 

     

W
a
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Figure 9: DLL for the implementation of CEA algorithm and uncertainty analysis. 

 

4.6 Outputs of the CEA 

 

The output of the CEA algorithm includes the present cost estimate of each adaptation 

measure for both the basic and uncertainty analyses. The results of the uncertainty analysis 

depend on the selected uncertainty method. Figures 10-17 show the outputs obtained from the 

implementation of the CEA for the various uncertainty techniques (Monte Carlo analysis with 

triangular and uniform distributions and fuzzy sets analysis with representative value and 

Ramik-Rimanek approaches, respectively), incorporating the cross-sectoral effects of each 

adaptation measure into the analysis.  

 

Specifically, Figures 10 and 11 illustrate the outputs from the implementation of the CEA 

using Monte Carlo analysis with triangular distributions as the uncertainty method for both of 

the options of excluding and including cross-sectoral indicators. Measure 2 appears to be the 

most cost-effective adaptation measure without taking into consideration the cross-sectoral 

effects, while Measure 4 has the worst cost-effective ratio. Measure 2 remains the best option 

after the implementation of the Monte Carlo analysis with triangular distributions, while 

Measure 5 becomes more cost-effective than Measure 3 (Figure 10).  Taking cross-sectoral 

effects into consideration, Measure 3 is the most cost-effective adaptation measure and 

Measure 4 the worst (Figure 11). The implementation of the Monte Carlo analysis with 

triangular distributions shows that Measure 3 is the most cost-effective measure, while it 

alters the ranking between Measure 5 and Measure 1. 
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Results obtained using Monte Carlo analysis with uniform distributions are shown in Figures 

12 and 13. In this illustration, Measure 4 has the best cost-effectiveness ratio when cross-

sectoral effects are not included and Measure 5 the worse.  Taking account of cross-sectoral 

effects results in Measure 4 becoming the least cost-effective, whilst Measure 2 becomes the 

best. 

 

The method of fuzzy sets analysis with the representative value approach results in Measure 2 

being the most cost-effective adaptation measure without taking into consideration the cross-

sectoral effects, while this is Measure 3 when cross-sectoral effects are taken into 

consideration (Figures 14 and 15).  Finally, according to the results of the fuzzy sets analysis 

with the Ramik-Rimanek approach (Figures 16 and 17), Measures 1 and 2 seem to be more 

cost-efficient without taking into consideration the cross-sectoral effects. Correspondingly, 

Measures 1 and 3 can be considered as better options in the case of taking into consideration 

the cross-sectoral effects. 

 

This analysis shows that parameter uncertainty can significantly affect the ranking of 

adaptation measures. Thus, it is highly important to use the most appropriate techniques to 

attempt to quatify this uncertainty. 

 

 

Figure 10: Output of the CEA algorithm using Monte Carlo analysis with triangular 

distributions as the selected uncertainty method without cross-sectoral effects. 
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Figure 11: Output of the CEA algorithm using Monte Carlo analysis with triangular 

distributions as the selected uncertainty method including cross-sectoral effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Output of the CEA algorithm implementing Monte Carlo analysis with 

uniform distributions as selected uncertainty method without cross-sectoral effects. 
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Figure 13: Output of the CEA algorithm using Monte Carlo analysis with uniform 

distributions as the selected uncertainty method including cross-sectoral effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Output of the CEA algorithm using Fuzzy Sets analysis with representative 

value approach as the selected uncertainty method without cross-sectoral effects. 
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Figure 15: Output of the CEA algorithm using Fuzzy Sets analysis with representative 

value approach as the selected uncertainty method including cross-sectoral effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Output of the CEA algorithm using Fuzzy Sets analysis with Ramik-Rimanek 

approach as the selected uncertainty method without cross-sectoral effects. 
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Figure 17: Output of the CEA algorithm using Fuzzy Sets analysis with Ramik-Rimanek 

approach as the selected uncertainty method including cross-sectoral effects. 

 

5. Application: The cost of adaptation in the water sector 
 

This section illustrates an application of the CEA methodology for a case study based on the 

water sector.  Estimates of water use under baseline conditions, specified changes in climate 

and socio-economic conditions, and after implementation of adaption measures were obtained 

from the IAP.  The “damage” scenario was defined as the CSMK3 climate model combined 

with an A1 emissions scenario, mid climate sensitivity and the Icarus socio-economic 

scenario for the 2050s time slice (see Deliverable D3.3 for details of the CLIMSAVE socio-

economic scenarios).  The adaptation scenario was specified assuming the maximum 

achievable water savings due to technological change, which is credible based on the 

availability of various capitals (human, social, manufactured, financial) within the Icarus 

socio-economic scenario.  The calculated figures for water use for the baseline and damage 

and adaptation scenarios are summarised in Table 12.  

 
Table 12: Calculated water use for the baseline and “damage” and “adaptation” scenarios. 

Scenario Water use (mil. m
3
) 

Baseline 93,758,029 

Damage 133,290,019 

Adaptation  126,606,974 
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The avoided water use was estimated by subtracting the water use of the damage scenario 

from the water use of the adaptation scenario.  Therefore, the total avoided water use amounts 

to 6,683,045 mil. m
3
, while the residual damage is 32,848,945 mil. m

3
. 

 

The adaptation measures, which can achieve the specific levels of water savings due to 

technological changes, are presented in Table 13, including their minimum, mean and 

maximum unitary cost estimates.  Table 14 shows the cross-sectoral indicators for the 

examined adaptation measures.  It should be mentioned that for the case of adaptation 

measures which have not been evaluated within the framework of Cross-Adapt, a 

correspondence of the available cross-sectoral indicators with the existing adaptation 

measures was attempted.  Finally, the cost estimates for the adaptation measures including the 

cross-sectoral effects are presented in Table 15.  

 

Table 13: Cost estimates for adaptation measures leading to water savings due to 

technological changes (€/m
3
). 

Water savings due to technological change Min Mode Max 

Aquifer recharge 0.03 0.44 0.74 

Dams and reservoir 0.02 0.08 0.23 

Desalination sea water thermal 0.12 1.58 7.25 

Desalination sea water reverse osmosis 0.29 1.51 12.09 

Desalination brackish water 0.15 1.22 8.32 

Desalination brackish water reverse osmosis 0.09 1.39 8.32 

Rainwater harvesting 0.03 0.46 2.25 

Recycling 0.03 0.45 1.24 

Wastewater reuse 0.03 0.17 0.31 

Water supply systems creation, connection and rehabilitation 0.01 0.06 0.16 

 

Table 14: Cross-sectoral indicators for adaptation measures leading to water savings 

due to technological changes.  

Water savings due to technological change Min Mode Max 

Aquifer recharge -126% -45% 49% 

Dams and reservoir -126% -45% 49% 

Desalination sea water thermal -5% 36% 85% 

Desalination sea water reverse osmosis -5% 36% 85% 

Desalination brackish water -5% 36% 85% 

Desalination brackish water reverse osmosis -5% 36% 85% 

Rainwater harvesting -126% -45% 49% 

Recycling -104% -46% 26% 

Wastewater reuse -104% -46% 26% 

Water supply systems creation, connection and rehabilitation -11% 34% 85% 
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Table 15: Cost estimates including cross-sectoral effects for adaptation measures leading 

to water savings due to technological changes (€/m
3
). 

Water savings due to technological change Min Mode Max 

Aquifer recharge -0.04 -0.20 0.36 

Dams and reservoir -0.03 -0.04 0.11 

Desalination sea water thermal -0.01 0.58 6.16 

Desalination sea water reverse osmosis -0.01 0.55 10.28 

Desalination brackish water -0.01 0.44 7.07 

Desalination brackish water reverse osmosis 0.00 0.51 7.07 

Rainwater harvesting -0.04 -0.21 1.09 

Recycling -0.03 -0.21 0.33 

Wastewater reuse -0.03 -0.08 0.08 

Water supply systems creation, connection and rehabilitation 0.00 0.02 0.14 

 

 

The results derived using both the basic and uncertainty analysis show the robustness of the 

estimates obtained vis-a-vis the cost-effectiveness of the examined adaptation measures 

without taking into consideration the cross-sectoral effect.  Specifically, the measures of 

“Water supply systems creation, connection and rehabilitation”, “Dams and reservoir” and 

“Wastewater reuse” are the most cost-effective options achieving the current levels of 

adaptation (Tables 16 and 17).  Measures related to desalination technologies are the least 

cost-effective measures.  The ranking of the examined adaptation measures was not altered 

during the implementation of the different techniques of uncertainty analysis. 

 

Table 16: Cost-effectiveness of the adaptation measures without including cross-sectoral 

effects for basic and uncertainty analysis (€/m
3
). 

Water savings due to technological change Basic 
Monte Carlo 

- Triangular 

Monte Carlo 

- Uniform 

Fuzzy -

Representative 

Aquifer recharge 0.44 0.35 0.56 0.43 

Dams and reservoir 0.08 0.07 0.05 0.09 

Desalination sea water thermal 1.58 1.78 1.57 2.11 

Desalination sea water reverse osmosis 1.51 4.64 5.84 2.68 

Desalination brackish water 1.22 3.24 4 1.97 

Desalination brackish water reverse osmosis 1.39 1.75 1.41 2.09 

Rainwater harvesting 0.46 0.52 1.93 0.63 

Recycling 0.45 0.24 1.06 0.50 

Wastewater reuse 0.17 0.09 0.1 0.17 

Water supply systems creation, connection 

and rehabilitation 
0.06 0.03 0.04 0.07 
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Table 17: Ranking of the cost-effectiveness of the adaptation measures without including 

cross-sectoral effects for basic and uncertainty analysis. 

Water savings due to technological change Basic 

Monte 

Carlo -

Triangular 

Monte 

Carlo - 

Uniform 

Fuzzy -

Representative 

Fuzzy – 

Ramik-

Rimanek 

Aquifer recharge 4 5 4 4 4 

Dams and reservoir 2 2 2 2 2 

Desalination sea water thermal 10 8 7 9 6 

Desalination sea water reverse osmosis 9 10 10 10 10 

Desalination brackish water 7 9 9 7 8 

Desalination brackish water reverse osmosis 8 7 6 8 9 

Rainwater harvesting 6 6 8 6 6 

Recycling 5 4 5 5 5 

Wastewater reuse 3 3 3 3 3 

Water supply systems creation, connection 

and rehabilitation 
1 1 1 1 1 

 

 

The integration of cross-sectoral effects significantly affects the ranking of the examined 

adaptation measures (Tables 18 and 19).  According to the results of the basic analysis, the 

measures “Rainwater harvesting” and “Recycling” are the most cost-effective.  These results 

are quite different to the analysis without cross-sectoral effects (Tables 16 and 17), 

highlighting the significance of integrating cross-sectoral effects into cost-effectiveness 

analysis. Nevertheless, the measures related to desalination technologies are still the least 

cost-effective. 

 

Table 18: Cost-effectiveness of the adaptation measures including cross-sectoral effects 

for basic and uncertainty analysis (€/m
3
). 

Water savings due to technological change Basic 
Monte Carlo -

Triangular 

Monte Carlo 

- Uniform 

Fuzzy -

Representative 

Aquifer recharge -0.20 0.01 0.17 -0.11 

Dams and reservoir -0.04 0.02 0.07 -0.02 

Desalination sea water thermal 0.57 1.75 0.44 1.20 

Desalination sea water reverse osmosis 0.54 2.53 1.71 1.69 

Desalination brackish water 0.44 3.61 6.22 1.21 

Desalination brackish water reverse osmosis 0.50 6.35 5.96 1.26 

Rainwater harvesting -0.21 0.35 0.79 -0.02 

Recycling -0.21 -0.03 0.21 -0.12 

Wastewater reuse -0.08 -0.04 0.06 -0.05 

Water supply systems creation, connection 

and rehabilitation 
0.02 0.03 0.13 0.03 
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Table 19: Ranking of the examined adaptation measures regarding their cost-

effectiveness including cross-sectoral effects for basic and uncertainty analysis. 

Water savings due to technological change Basic 

Monte 

Carlo -

Triangular 

Monte 

Carlo - 

Uniform 

Fuzzy -

Representative 

Fuzzy – 

Ramik-

Rimanek 

Aquifer recharge 3 3 4 2 4 

Dams and reservoir 5 4 2 5 5 

Desalination sea water thermal 10 7 6 7 7 

Desalination sea water reverse osmosis 9 8 8 10 10 

Desalination brackish water 7 9 10 8 7 

Desalination brackish water reverse osmosis 8 10 9 9 9 

Rainwater harvesting 1 6 7 4 1 

Recycling 2 2 5 1 1 

Wastewater reuse 4 1 1 3 1 

Water supply systems creation, connection 

and rehabilitation 
6 5 3 6 6 

 

 

The uncertainty techniques differentiated slightly the final rankings. Specifically, the 

measures “Wastewater reuse” and “Recycling” are the most cost-efficient options according 

to the results of Monte Carlo analysis using triangular distributions, while the measures 

“Wastewater reuse” and “Dams and reservoir” are the best options when uniform distributions 

are used.  Alternatively, the method of fuzzy sets with the ‘representative value approach’ led 

to the identification of the measures “Recycling” and “Aquifer recharge” as the best options. 

Hence, performance of the uncertainty analysis on the results which included cross-sectoral 

effects highlights the significant variation that can occur among the cost-effectiveness ranking 

of adaptation measures when different uncertainty approaches are used. 

 

Finally, the adaptation cost for each examined adaptation measure was estimated separately 

for the basic analysis both with and without including the cross-sectoral effects.  According to 

the results presented in Table 20, adaptation costs range between 401 and 10,559 bil. € 

without taking into consideration the cross-sectoral effects and between -1,383 and 3,847 bil. 

€ taking into account the cross-sectoral synergies.  It is obvious that all adaptation measures - 

with the exception of “Water supply systems creation, connection and rehabilitation” - lead to 

significant benefits when cross-sectoral effects are incorporated into the cost-effectiveness 

calculations. 
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Table 20: Adaptation cost of the examined adaptation measures for the basic analysis 

(mil. €). 

Water savings due to technological change 
Cross-sectoral effects 

Exclusion Inclusion 

Aquifer recharge 2,940,540 -1,323,243 

Dams and reservoir 534,644 -240,590 

Desalination sea water thermal 10,559,211 3,846,570 

Desalination sea water reverse osmosis 10,091,398 3,676,152 

Desalination brackish water 8,153,315 2,970,136 

Desalination brackish water reverse osmosis 9,289,433 3,384,008 

Rainwater harvesting 3,074,201 -1,383,390 

Recycling 3,007,370 -1,374,798 

Wastewater reuse 1,136,118 -519,368 

Water supply systems creation, connection and 

rehabilitation 
400,983 137,480 

 

 

6. Summary 
 

Few attempts have been made to identify and quantify the potential cross-sectoral effects of 

adaptation measures in economic terms.  Thus, the quantification of cross-sectoral effects of 

adaptation actions and, particularly, their integration into cost-effectiveness analysis remain 

open and challenging issues in the area of climate change economics.  

 

Within the context of the CLIMSAVE project, a methodological approach was developed for 

quantifying in economic terms the inter- or intra-sectoral adaptation synergies for six sectors: 

coasts, biodiversity, agriculture, water, forests and urban.  The methodological approach relies 

on the assumption that a direct relationship exists between the effectiveness of an adaptation 

measure in a specific sector and its auxiliary effects in other ‘neighbouring’ sectors.  Hence, 

the methodology provides information on both the direction and intensity of cross-sectoral 

impacts and their potential cost, so as to incorporate them into a cost-effectiveness evaluation 

framework. 

 

Considering that the issue of cross-sectoral effects is new, complex, and generally poorly 

studied and, consequently, it is characterised by high uncertainty, an expert judgment 

approach was utilised to synthesise the available qualitative and quantitative information into 

the proposed framework.  Finally, a specific tool, namely CrossAdapt, was developed to 

facilitate the elicitation of experts’ judgments.  The CrossAdapt tool seeks both to clarify if 

each sector-specific adaptation investment generates positive or negative auxiliary effects on 

neighboring sectors and to provide an estimate for the derived costs or benefits from these 

cross-sectoral effects. 

 

The methodological framework and the CrossAdapt tool were implemented within the 

CLIMSAVE project with the participation of 56 experts.  In order to calculate the cross-

sectoral indicators for each adaptation measure, the collected data were analysed and 

interpreted by means of ‘unweighted’ and ‘weighted’ approaches, which led to similar results. 
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A further analysis of the experts’ opinions was also carried out to examine if significant 

ambiguities with respect to specific adaptation measures existed.  The analysis was 

implemented setting an arbitrary ambiguity threshold score of an agreement degree between 

experts of 10% or lower.  According to the results, the ambiguity effect is lower in the sectors 

of urban, forests and biodiversity, while it is higher in the sectors of water, agriculture and 

coasts.  The disagreement between experts was attributed mainly to gaps in existing 

knowledge and the fact that experts responded differently in some cases, providing however 

an equally acceptable justification for their opinion.  Finally, an additional issue was the 

‘contradicting’ effect of specific actions described under an adaptation measure. 

 

A CEA algorithm was developed to undertake the cost-effectiveness evaluation of the 

examined adaptation measures based on ranking of their unitary cost estimates.  The 

implementation of the CEA algorithm required costing information for each of the examined 

adaptation measures.  As this information did not exist in an easily accessible format, an in-

depth bibliographical review was undertaken to collect cost estimates for the various 

adaptation measures in different sectors within a database. 

 

Several methods were used for performing an uncertainty analysis within the CEA algorithm.  

Monte Carlo techniques and fuzzy sets analysis were chosen based on the availability of data 

and the simplicity of the calculation.  Triangular and uniform distributions were selected for 

the implementation of Monte Carlo technique.  Correspondingly, the representative value and 

Ramik-Rimanek approaches were selected for the fuzzy sets analysis.  The CEA algorithm 

and the final uncertainty techniques were integrated into a CEA DLL for their effective 

implementation. 

 

Finally, a case study for the estimation of adaptation costs in the water sector was analysed. 

The main conclusions show that the results derived using both the basic and uncertainty 

analysis are relatively robust in terms of the cost-effectiveness of the examined adaptation 

measures without taking into consideration any cross-sectoral effects.  The integration of 

cross-sectoral effects significantly alters the ranking of the adaptation measures, while the 

results of uncertainty analysis were characterised by significant variation. 
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Appendix A: The CLIMSAVE adaptation cost database 
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Appendix B: CrossAdapt Tool 
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Procedure for the completion of CrossAdapt 

BIODIVERSITY 

Type of impact: How will wetland creation affect biodiversity? 

Positively 

Intensity - Central value: What is the percentage change in the state of biodiversity?  

50% 

Intensity - Min value: What is the lower bound of your estimation? 

30% 

Intensity - Max value: What is the upper bound of your estimation? 

60% 

Degree of certainty: What is your certainty level regarding your estimation using a Likert scale? 

High 

AGRICULTURE 

Type of impact: How will wetland creation affect agriculture? 

Negatively 

Intensity - Central value: What is the percentage change in the state of agriculture? 

60% 

Intensity - MIn value: What is the lower bound of your estimation? 

20% 

Intensity - Max value: What is the upper bound of your estimation? 

80% 

Degree of certainty: What is your certainty level regarding your estimation using a Likert scale? 

Medium 

WATER 

How will wetland creation affect water sector? 

Negatively 

Intensity - Central value: What is the percentage change in the state of water? 

20% 

Intensity - Min value: What is the lower bound of your estimation? 

10% 

Intensity - Max value: What is the upper bound of your estimation? 

50% 

Degree of certainty: What is your certainty level regarding your estimation using a Likert scale? 

Medium 

 


